Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-5pp.495-507

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 50, Issue 5 / 2015 | Next article >>
V.A. Eremeev and A.V. Nasedkin, "Natural Vibrations of Nanodimensional Piezoelectric Bodies with Contact-Type Boundary Conditions," Mech. Solids. 50 (5), 495-507 (2015)
Year 2015 Volume 50 Number 5 Pages 495-507
DOI 10.3103/S0025654415050027
Title Natural Vibrations of Nanodimensional Piezoelectric Bodies with Contact-Type Boundary Conditions
Author(s) V.A. Eremeev (Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; South Scientific Center, Russian Academy of Sciences, ul. Chekhova 41, Rostov-on-Don, 344006 Russia; South Federal University, pr. Stachki 200/1, Rostov-on-Don, 344090 Russia)
A.V. Nasedkin (South Federal University, pr. Stachki 200/1, Rostov-on-Don, 344090 Russia, nasedkin@math.sfedu.ru)
Abstract Homogeneous problems of vibrations of nanodimensional piezoelectric bodies with surface stresses and electric charges taken into account are studied. The boundary conditions modeling the frictionless contact of a body with rigid massive punches and the body coverings by a system of open and grounded electrodes are considered. The weak statements of these problems are given. It is proved that the spectrum is real and discrete and the system of eigenfunctions is complete. Several theorems on the eigenfrequency variations are stated with the surface effects taken into account and in the case of variations in the mechanical and electrical boundary conditions and the material characteristics. The finite element approximations are used to state finite-dimensional generalized eigenvalue problems. The results of finite-element calculations of the model problem, which illustrate the influence of surface effects, are given.
Keywords electro-elasticity, piezoelectricity, nanomechanics, eigenfrequency, spectral property, surface effect
References
1.  H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, "Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities with Interface Stress," J. Mech. Phys. Solids 53 (7), 1574-1596 (2005).
2.  H. L. Duan, J. Wang, and B. L. Karihaloo, "Theory of Elasticity at the Nanoscale," Adv. Appl. Mech. 42, 1-63 (2008).
3.  V. A. Eremeyev, H. Altenbach, and N. F. Morozov, "The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates," Dokl. Ross. Akad. Nauk 424 (5), 618-620 (2009) [Dokl. Phys. (Engl. Transl.) 54 (2), 98-100 (2009)].
4.  R. V. Goldstein, E. A. Kasparova, and P. S. Shushpannikov, "Role of Surface Effects in Deformation of Two-Layer Plates," Vestnik Tambov. Univ. 15 (3-2), 1182-1185 (2010).
5.  R. V. Goldstein, V. A. Gorodtsov, and K. V. Ustinov, "Influence of Surface Residual Stresses and Surface Elasticity on Deformation of Spherical Inclusions of Nano-Meter Dimensions in and Elastic Matrix," Fiz. Mezomekh. 13 (5), 127-138 (2010).
6.  J. Wang, Z. P. Huang, H. L. Duan, et al., "Surface Stress Effect in Mechanics of Nanostructured Materials," Acta Mech. Solida Sinica 24 (1), 52-82 (2011).
7.  A. A. Javili, A. A. McBride, and P. Steinmann, "Thermomechanics of Solids with Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review," Appl. Mech. Rev. 65 (1), 010802-31 (2013).
8.  M. E. Gurtin and A. I. Murdoch, "A Continuum Theory of Elastic Material Surfaces," Arch. Rat. Mech. Anal. 57 (4), 291-323 (1975).
9.  Ya. S. Podstrigach and Yu. Z. Povstenko, Introduction to Mechanics of Surface Phenomena in Strained Rigid Bodies (Naukova Dumka, Kiev, 1985) [in Russian].
10.  H. Altenbach, V. A. Eremeev, and N. F. Morozov, "On Equations of the Linear Theory of Shells with Surface Stresses Taken into Account," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 30-44 (2010) [Mech. Solids (Engl. Transl.) 45 (3), 331-342 (2010)].
11.  H. Altenbach, V. A. Eremeyev, and L. P. Lebedev, "On the Existence of Solutions in the Linear Elasticity with Surface Stresses," ZAMM 90 (3), 231-240 (2010).
12.  V. A. Eremeyev and L. P. Lebedev, "Existence of Weak Solutions in Elasticity," Math. Mech. Solids 18 (2), 204-217 (2013).
13.  H. L. Duan, J. Wang, B. L. Karihaloo, and Z. P. Huang, "Nanoporous Materials Can Be Made Stiffer Than Non-Porous Counterparts by Surface Modification," Acta Mater. 54 (11), 2983-2990 (2006).
14.  H. Ibach, "The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures," Surf. Sci. Rep. 29 (5-6), 195-263 (1997).
15.  K. B. Ustinov, R. V. Goldstein, and V. A. Gorodtsov, "On the Modeling of Surface and Interface Elastic Effects in the Case of Eigenstrains," in Advanced Structural Materials, Vol. 30: Surface Effects in Solid Mechanics - Models, Simulations and Applications, Ed. by H. Altenbach and N. F. Morozov (Springer, Berlin, 2013), pp. 167-180.
16.  V. B. Shenoy and R. E. Miller, "Size-Dependent Elastic Properties of Nanosized Structural Elements," Nanotechnol. 11 (3), 139-147 (2000).
17.  V. B. Shenoy, "Atomistic Calculations of Elastic Properites of Metallic Fee Crystal Surfaces," Phys. Rev. 71 (9), 094104-11 (2005).
18.  G. Y. Huang and S. W. Yu, "Effect of Surface Piezoelectricity on the Electromechanical Behaviour of a Piezoelectric Ring," Phys. Status Solidi B 243 (4), R22-R24 (2006).
19.  A. V. Nasedkin and V. A. Eremeyev, "Spectral Properties of Piezoelectric Bodies with Surface Effects," in Advanced Structural Materials, Vol. 30: Surface Effects in Solid Mechanics - Models, Simulations and Applications, Ed. by H. Altenbach and N. F. Morozov (Springer, Berlin, 2013), pp. 105-121.
20.  A. V. Belokon' and I. I. Vorovich, "Several Mathematical Problems of the Theory of Electro-Elastic Bodies," in Actual Problems of Mechanics of Deformable Media (DGU, Dnepropetrovsk, 1979), pp. 52-67 [in Russian].
21.  H. Altenbach, V. A. Eremeyev, and L. P. Lebedev, "On the Spectrum and Stiffness of an Elastic Body with Surface Stresses," ZAMM 91 (9), 699-710 (2011).
22.  A. V. Belokon' and A. V. Nasedkin, "Some Properties of the Natural Frequencies of Electroelastic Bodies of Bounded Dimensions," Prikl. Mat. Mekh. 60 (1), 151-158 (1996) [J. Appl. Math. Mech. (Engl. Transl.) 60 (1), 145-152 (1996)].
23.  F. Riesz and B. Sz.-Nagy, Lectures in Functional Analysis (Budapest, 1953; Mir, Moscow, 1979).
24.  S. G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon, New York, 1964; Nauka, Moscow, 1970).
25.  K. J. Bathe, Finite Element Procedures (Prentice Hall, Englewood Cliffs, HJ, 1996; Fizmatlit, Moscow, 2010).
26.  O. Zienkiewicz and K. Morgan, Finite Elements and Approximation (Wiley, New York, 1983; Mir, Moscow, 1986).
27.  G. Iovane and A. V. Nasedkin, "Some Theorems about Spectrum and Finite Element Approach for Eigenvalue Problems for Elastic Bodies with Voids," Comput. Math. Applicat. 53 (5), 789-802 (2007).
28.  G. Iovane and A. V. Nasedkin, "Modal Analysis of Piezoelectric Bodies with Voids. II. Finite Element Simulation," Appl. Math. Model. 34 (1), 47-59 (2010).
29.  E. Dieulesaint and D. Royer, Elastic Waves in Solids. Application to Signal Processing (Masson, Paris, 1974; Wiley New York 1980; Nauka, Moscow, 1982).
Received 11 February 2013
Link to Fulltext
<< Previous article | Volume 50, Issue 5 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100