Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-5pp.485-494

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 50, Issue 5 / 2015 | Next article >>
V.P. Legeza, "Amplitude-Frequency Characteristic Equations of a Vibroprotection System with an Isochronous Roller Damper (a Nonlinear Model)," Mech. Solids. 50 (5), 485-494 (2015)
Year 2015 Volume 50 Number 5 Pages 485-494
DOI 10.3103/S0025654415050015
Title Amplitude-Frequency Characteristic Equations of a Vibroprotection System with an Isochronous Roller Damper (a Nonlinear Model)
Author(s) V.P. Legeza (National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony 15, Kiev, 03041 Ukraine, viktor.legeza@gmail.com)
Abstract The amplitude-frequency characteristic equations of a nonlinear vibroprotection system with an isochronous roller damper are obtained in the first approximation. On the basis of these equations, we carry out a numerical experiment and propose a numerical-graphical method for determining the optimal tuning parameters of such a damper. It is shown that the natural damper tuning frequency in the nonlinear setting does not coincide with the natural damper tuning frequency in the linear setting. Numerical analysis is also used to determine that the maximum amplitudes of the bearing body in the nonlinear problem exceed the maximum amplitudes of the bearing body in the linear problem. It is shown that the use of the new isochronous roller damper permits dramatically decreasing the forced vibration amplitudes of bearing bodies.
Keywords vibroprotection system, isochronous roller damper, roller brachistochrone, steady-state forced vibrations, amplitude-frequency characteristic, damper tuning parameters
References
1.  B. G. Korenev, "Dynamical Dampers of Vibrations," in Proc. of Intern. Symp. "Vibroprotection in Building," Vol. 2 (Leningrad, Kuycherenko TsNIISK, 1984), pp. 7-17 [in Russian].
2.  B. G. Korenev and L. M. Reznikov, Dynamic Vibration Absorber (Nauka, Moscow, 1988) [in Russian].
3.  M. P. Kodra, I. N. Lebedits, A. N. Lugovtsov, and G. M. Fomin, "Study of the Wind Effects on the `Motherland' Sculpture in Kiev," Stroit. Mekh. Rashch. Sooruzh., No. 4, 45-47 (1984).
4.  B. V. Ostroumov, Studies, Development, and Implementation of High-Rise Structures with Vibrodampers, Abstract of Doctoral Dissertation in Technical Sciences (ZAO Mel'nikov "TsNIIPSK", Moscow, 2003) [in Russian].
5.  A. V. Dukart, Problems of the Theory of Impact Vibration Dampers (Izd-vo ASV, Moscow, 2006) [in Russian].
6.  D. V. Balandin, N. N. Bolotnik, and W. D. Pilkey, Optimal Protection from Impact, Shock, and Vibration (Gordon and Breach, Amsterdam, 2001).
7.  J. C. Snowdon, Vibration and Shock in Damped Mechanical Systems (Wiley, New York, 1968).
8.  E. Simiu and R. Scanlan, Wind Effects on Structures. An Introduction to Wind Engineering (New York, 1978).
9.  V. P. Legeza, "Vibroprotection of Dynamical Systems by Roller Dampers," (Chetverta Khvilya, Kiev, 2010) [in Ukrainian].
10.  V. P. Legeza, "Efficiency of a Vibroprotection System with an Isochronous Roller Damper," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 65-76 (2013) [Mech. Solids (Engl. Transl.) 48 (2), 168-177 (2013)].
11.  V. P. Legeza, "Cycloidal Pendulum with a Rolling Cylinder," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 11-15 (2012) [Mech. Solids (Engl. Transl.) 47 (4), 380-384 (2012)].
12.  V. P. Legeza and D. V. Legeza, "Isochronous Roller Damper of Forced Vibrations," Patent of Ukraine No. 99759 (17 February 2003), F16 F7/10, E04 B1/98, Bulletin No. 18.
13.  Ya. G. Panovko, Foundations of Applied Theory of Vibrations and Impact (Mashinostroenie, Leningrad, 1976) [in Russian].
14.  S. P. Timoshenko, D. H. Young, and W. Weaver, Vibration Problems in Engineering (Wiley, New York, 1974; Mashinostroenie, Moscow, 1985).
15.  K. Klotter, "Nonlinear Vibration Problem Treated by the Averaging Method of W. Ritz," in Proc. 1st U.S. Nation. Congr. Appl. Mech. (Edwards Brothers Inc., Chicago, Illinois, 1951), pp. 125-131.
16.  W. Ritz, "Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik," J. für die reine and angewandte Mathematick (Crelle) 135 (1), 1-61.
17.  Building Regulations (SNiP) 2.01.07-85*. Loads and Their Effects. Design Norms (Gosstroi Russii, Moscow, 2004) [in Russian].
18.  DBN B.1.2-2:2006. Loads and Actions. Design Standards (Minstroi Ukrainy, Kiev, 2006) [in Ukrainian].
Received 27 March 2013
Link to Fulltext
<< Previous article | Volume 50, Issue 5 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100