| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12868 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8057
|
In English (Mech. Solids): | | 4811 |
|
<< Previous article | Volume 50, Issue 2 / 2015 | Next article >> |
E.A. Bashkankova, A.B. Vakaeva, and M.A. Grekov, "Perturbation Method in the Problem on a Nearly Circular Hole in an Elastic Plane," Mech. Solids. 50 (2), 198-207 (2015) |
Year |
2015 |
Volume |
50 |
Number |
2 |
Pages |
198-207 |
DOI |
10.3103/S0025654415020090 |
Title |
Perturbation Method in the Problem on a Nearly Circular Hole in an Elastic Plane |
Author(s) |
E.A. Bashkankova (St. Petersburg State University, Universitetskii pr. 28, Petergof, St. Petersburg, 198504 Russia, ekaterina.bashkankova91@gmail.com)
A.B. Vakaeva (St. Petersburg State University, Universitetskii pr. 28, Petergof, St. Petersburg, 198504 Russia, alexandra.vakaeva@gmail.com)
M.A. Grekov (St. Petersburg State University, Universitetskii pr. 28, Petergof, St. Petersburg, 198504 Russia, magrekov@mail.ru) |
Abstract |
The perturbation method is used to construct the solution of the plane elasticity problem for a plane with a curvilinear nearly circular hole. An algorithm for calculating any approximation represented as a Cauchy type integral depending on all preceding approximations is given. The complex potentials of the first approximation are obtained for an elliptic hole and a curvilinear hole whose boundary deviates from the unit circle in the radial direction according to the cosine law. An example of elliptic hole is used to analyze the error in the first approximation of the stress concentration factor by comparing it with the exact solution. The influence of the hole shape on the distribution of circular stresses on the boundary is studied. |
Keywords |
perturbation method, plane problem, curvilinear hole, stress concentration |
References |
1. | J. R. Rice,
"First Order Variations in Elastic Fields due to Variations
in Location of a Planar Crack Front,"
Trans. ASME. J. Appl. Mech.
52, 571-579 (1985). |
2. | H. Gao and J. R. Rice,
"Shear Stress Intensity Factors for a Planar Crack
with Slightly Curved Front,"
Trans. ASME. J. Appl. Mech.
53 (4), 774-778 (1986). |
3. | H. Gao and J. R. Rice,
"Somewhat Circular Tensile Crack,"
Int. J. Fract.
33 (3), 155-174 (1987). |
4. | H. Gao,
"Nearly Circular Shear Mode Cracks,"
Int. J. Solids Struct.
24 (2), 177-193 (1988). |
5. | P. A. Martin,
"Mapping Flat Cracks onto Penny-Shaped Cracks: Shear Loading,"
J. Mech. Phys. Solids
43 (2), 275-294 (1995). |
6. | P. A. Martin,
"Mapping Flat Cracks onto Penny-Shaped Cracks,
with Application to Somewhat Circular Tensile Cracks,"
Quart. Appl. Math.
54 (4), 663-675 (1996). |
7. | P. A. Martin,
"On Wrinkled Penny-Shaped Cracks,"
J. Mech. Phys. Solids
49 (7), 1481-1495 (2001). |
8. | P. A. Martin,
"Perturbed Cracks in Two Dimensions: An Integral Equation Approach,"
Int. J. Fract.
104, 317-327 (2000). |
9. | A. E. H. Love,
A Treatise on the Mathematical Theory of Elasticity
(Cambridge Univ. Press, Cambridge, 1927; ONTI HKGiP SSSR, Moscow-Leningrad, 1935). |
10. | R. V. Goldstein and R. L. Salganik,
"The Plane Problem on Curved Cracks in Elastic Body,"
Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela,
No. 3, 69-82 (1970)
[Mech. Solids (Engl. Transl.)]. |
11. | M. P. Savruk,
Two-Dimensional Elasticity Problems for Bodies with Cracks
(Naukova Dumka, Kiev, 1981)
[in Russian]. |
12. | H. Gao,
"Stress Concentration at Slightly Undulating Surfaces,"
J. Mech. Phys. Solids
39 (4), 443-458 (1991). |
13. | A. E. Green and W. Zerna,
Theoretical Elasticity
(Univ. Press, Oxford-London, 1968). |
14. | R. D. Mindlin,
"Force at a Point in the Interior of Semi-Infinite Solids,"
Physics
7 (5), 195-202 (1936). |
15. | G. V. Kolosov,
Application of Complex Diagrams and Theory of Functions of a Complex Variable in Elasticity
(ONTI, Moscow-Leningrad, 1935)
[in Russian]. |
16. | N. I. Muskhelishvili,
Several Fundamental Problems of Mathematical Theory of Elasticity
(Nauka, Moscow, 1966)
[in Russian]. |
17. | N. V. Banichuk,
"Determination of the Shape of a Curved Crack by the Small Parameter Method,"
Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela,
No. 2, 130-137 (1970)
[Mech. Solids (Engl. Transl.)]. |
18. | B. Cotterell and J. R. Rice,
"Slightly Curved of Kinked Cracks,"
Int. J. Fract.
16 (2), 155-169 (1980). |
19. | H. Gao,
"A Boundary Perturbation Analysis for Elastic Inclusions and Interfaces,"
Int. J. Solids Struct.
28 (6), 703-725 (1991). |
20. | M. A. Grekov and S. N. Makarov,
"Stress Concentration near a Slightly Curved Part of an Elastic Body Surface,"
Izv. Akad. Nauk, Mekh. Tverd. Tela,
No. 6, 53-61 (2004)
[Mech. Solids (Engl. Transl.)
39 (6), 40-46 (2004)]. |
21. | M. A. Grekov,
"The Perturbation Approach for a Two-Component Composite with Slightly Curved Interface,"
Vestnik St. Peterburg. Univ. Ser. 1,
No. 1, 81-88 (2004)
[Vestnik St. Petersburg Univ. Math. (Engl. Transl.)]. |
22. | M. A. Grekov and S. A. Kostyrko,
"Loss of Stability of Film Coating Plane Shape in Surface Diffusion,"
Vestnik St. Peterburg. Univ. Ser. 10,
No. 1, 46-54 (2007)
[Vestnik St. Petersburg Univ. Math. (Engl. Transl.)]. |
23. | M. A. Grekov,
"A Slightly Curved Crack near the Interface in Dissimilar Material,"
Vestnik St. Peterburg. Univ. Ser. 1,
No. 1, 93-100 (2008)
[Vestnik St. Petersburg Univ. Math. (Engl. Transl.)]. |
24. | Yu. I. Vikulina, M. A. Grekov, and S. A. Kostyrko,
"Model of Film Coating with Weakly Curved Surface,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 6, 16-28 (2010)
[Mech. Solids (Engl. Transl.)
45 (6), 778-788 (2010)]. |
25. | M. A. Grekov,
"Two Types of Interface Defects,"
Prikl. Mat. Mekh.
75 (4), 678-697 (2011)
[J. Appl. Math. Mech. (Engl. Transl.)
75 (4), 476-488 (2011)]. |
26. | M. A. Grekov and S. A. Kostyrko,
"A Film Coating on a Rough Surface of an Elastic Body,"
Prikl. Mat. Mekh.
77 (1), 113-128 (2013)
[J. Appl. Math. Mech. (Engl. Transl.)
77 (1), 79-90 (2013)]. |
27. | M. A. Grekov and N. F. Morozov,
"Some Modern Methods in Mechanics of Cracks,"
in Operator Theory: Advances and Applications,
Vol. 191: Modern Analysis and Applications
Ed. by V. Adanyan et al.
(Birkhäuser, Basel, 2009),
pp. 127-142. |
28. | M. A. Grekov,
Singular Plane Problem of Elasticity
(Izd-vo St. Petersburg Univ., St. Petersburg, 2001)
[in Russian]. |
29. | G. N. Savin,
Stress Distribution near Holes
(Naukova Dumka, Kiev, 1968)
[in Russian]. |
|
Received |
28 March 2014 |
Link to Fulltext |
|
<< Previous article | Volume 50, Issue 2 / 2015 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|