Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-1pp.44-51

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 50, Issue 1 / 2015 | Next article >>
A.Yu. Kuksin and A.V. Yanilkin, "Dislocation Nucleation and Motion in Metals and Alloys at High-Rate Deformation: Molecular Dynamic Simulation," Mech. Solids. 50 (1), 44-51 (2015)
Year 2015 Volume 50 Number 1 Pages 44-51
DOI 10.3103/S0025654415010057
Title Dislocation Nucleation and Motion in Metals and Alloys at High-Rate Deformation: Molecular Dynamic Simulation
Author(s) A.Yu. Kuksin (Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13-2, Moscow, 125412 Russia; Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141700 Russia, alexey.kuksin@gmail.com)
A.V. Yanilkin (Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13-2, Moscow, 125412 Russia; Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141700 Russia)
Abstract Molecular dynamic simulation was used to calculate the critical stresses necessary for dislocations to nucleate and move in the dynamic friction mode and determine the coefficients of dislocation phonon friction in metals with point defects and Guinier-Preston (GP) zones (in the Al-Cu alloy) taken into account. The temperature dependencies of the critical stresses required to overcome the GP zones in Al at different speeds of dislocation motion were analyzed to distinguish the thermofluctuation and dynamic (weakly depending on T) contributions to the yield strength at high-rate deformations. It was noted that the dislocation nucleation stresses strongly decrease with increasing temperature in the defect-free case and the stresses of dislocation heterogeneous nucleation on GP clusters remain nearly unchanged.
Keywords dislocations, Guinier-Preston clusters, phonon friction, high-rate deformation, molecular dynamics
References
1.  G. I. Kanel, V. E. Fortov, and S. V. Razorenov, "Shock Waves in Condensed-State Physics," Uspekhi Fiz. Nauk 177 (8), 809-830 (2007) [Phys. Uspekhi (Engl. Transl.) 50 (8), 771-791 (2007)].
2.  V. I. Al'shits and V. L. Indenbom, "Dynamical Drag on Dislocations," Uspekhi Fiz. Nauk 115 (1), 3-38 (1975). [Sov. Phys. Usp. (Engl. Transl) 18 (1), 1-20 (1975)].
3.  G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].
4.  G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, "Dynamic Yield and Tensile Strength of Aluminum Single Crystals at Temperatures up to the Melting Point," J. Appl. Phys. 90 (1), 136-143 (2001).
5.  E. V. Zaretsky and G. I. Kanel, "Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point," J. Appl. Phys. 114 (8), 083511 (2013).
6.  S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al., "Behavior of Aluminum near an Ultimate Theoretical Strength in Experiments with Femtosecond Laser Pulses," Pis'ma Zh. Eksp. Teor. Fiz. 92 (8), 568-573 (2010). [JETP Lett. (Engl. Transl.) 92 (8), 516-520 (2010)].
7.  R. F. Smith, J. H. Eggert, R. E. Rudd, et al., "High Strain-Rate Plastic Flow in Al and Fe," J. Appl. Phys. 110 (12), 123515 (2011).
8.  G. E. Norman and V. V. Stegailov, "Stochastic Theory of the Classical Molecular Dynamics Method," Mat. Modelirovanie 24 (6), 3-44 (2012) [Math. Models Comput. Simul. (Engl. Transl.) 5 (4), 305-333 (2013)].
9.  M. S. Daw, S. M. Foiles, and M. I. Baskes, "EAM: A Review of Theory and Application," Mater. Sci. Rep. 9, 251 (1992).
10.  X. -Y. Liu, X. Wei, S. M. Foiles, and J. B. Adams, "Atomistic Studies of Segregation and Diffusion in Al-Cu Grain Boundaries," Appl. Phys. Lett. 72 (13), 1578 (1998).
11.  F. Apostol and Y. Mishin, "Interatomic Potential for the Al-Cu System," Phys. Rev. B 83, 054116 (2011).
12.  S. V. Starikov, Z. Insepov, J. Rest, et al., "Radiation-Induced Damage and Evolution of Defects in Mo," Phys. Rev. B 84 (10), 104109 (2011).
13.  M. I. Mendelev, S. Han, D. J. Srolovitz, et al., "Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron," Phil. Mag. 83, 3977 (2003).
14.  A. Yu. Kuksin and A. V. Yanilkin, "Atomistic Simulation of the Motion of Dislocations in Metals under Phonon Drag Conditions," Fiz. Tverd. Tela 55 (5), 931-939 (2013) [Phys. Solid State (Engl. Transl.) 55 (5), 1010-1119 (2013)].
15.  S. J. Plimpton, "Fat Parallel Algorithms for Short-Range Molecular Dynamics," J. Comput. Phys. 117, 1 (1995).
16.  F. W. Gayle and M. Goodway, "Precipitation Hardening in the First Aerospace Aluminum Alloy: The Wright Flyer Crankcase," Science 266, 1015 (1994).
17.  A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, "Molecular-Dynamics Simulation of Edge-Dislocation Dynamics in Aluminum," Dokl. Ross. Akad. Nauk 420, 467-471 (2008) [Dokl. Phys. (Engl. Transl.) 53 (6), 287-291 (2008)].
18.  A. V. Yanilkin, V. S. Krasnikov, A. Yu. Kuksin, and A. E. Mayer, "Dynamics and Kinetics of Dislocations in Al and Al-Cu Alloy under Dynamic Loading," Int. J. Plasticity 55, 94-107 (2014).
19.  M. Itakura, H. Kaburaki, and M. Yamaguchi, "First-Principles Study on the Mobility of Screw Dislocations in BCC Iron," Acta Mater. 60, 3698-3710 (2012).
20.  M. R. Gilbert, P. Schuck, B. Sadigh, and J. Marian, "Free Energy Generalization of the Peierls Potential in Iron," Phys. Rev. Lett. 111, 095502 (2013).
21.  T. D. Swinburne, S. L. Dudarev, S. P. Fitzgerald, et al., "Theory and Simulation of the Diffusion of Kinks on Dislocations in BCC Metals," Phys. Rev. B 87, 064108 (2013).
22.  T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Springer-Verlag, 1985; Mir, Moscow, 1989).
23.  D. L. Olmsted, L. G. Hector, Jr., W. A. Gurtin, and R. J. Clifton, "Atomistic Simulatios of Dislocation Mobilityin Al, Ni, and Al/Mg Alloys," Model. Simul. Mater. Sci. Engng 13, 371-378 (2005).
24.  K. Tapasa, D. J. Bacon, and Yu. N. Osetsky, "Computer Simulation of Dislocation-Solute Interaction in Dilute Fe-Cu Alloys," Model. Simul. Mater. Sci. Engng 14, 1153 (2006).
25.  G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, "Submicrosecond Strength of the D16T Aluminum Alloy at Room and Elevated Temperatures," Fiz. Tverd. Tela 50 (5), 805-811 (2008) [Phys. Solid State (Engl. Transl.) 50 (5), 839-843 (2008)].
26.  R. K. Rajgarhia, D. E. Spearot, and A. Saxena, "Heterogeneous Dislocation Nucleation in Single Crystal Copper-Antimony Solid-Solution Alloys," Model. Simul. Mater. Sci. Engng 17 (5),  055001 (2005).
Received 17 July 2014
Link to Fulltext
<< Previous article | Volume 50, Issue 1 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100