Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2014-6pp.635-642

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
I.N. Borodin and Yu.V. Petrov, "Relaxation Model of Dynamic Plastic Deformation of Materials," Mech. Solids. 49 (6), 635-642 (2014)
Year 2014 Volume 49 Number 6 Pages 635-642
DOI 10.3103/S0025654414060041
Title Relaxation Model of Dynamic Plastic Deformation of Materials
Author(s) I.N. Borodin (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoi pr. 61, St. Petersburg, 199178 Russia,
Yu.V. Petrov (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoi pr. 61, St. Petersburg, 199178 Russia; St. Petersburg State University, Universitetskii pr. 28, Petergof, St. Petersburg, 198504 Russia,
Abstract A version of the metal plasticity relaxation model based on a plasticity integral criterion with the characteristic relaxation time parameter is suggested. The dislocation concepts of metal plasticity together with the Maxwell model for a strongly viscous fluid are used to show that this characteristic relaxation time parameter can be interpreted in terms of dissipation and energy accumulation in the case of mobile dislocations. The coincidence of the values of characteristic plastic relaxation time obtained for various descriptions of the whisker deformation allows one to conclude that the characteristic relaxation time is a basic characteristic of the material dynamic properties.
Keywords plasticity relaxation model, characteristic relaxation time, sharp yield point, whisker, yield point, dislocation
1.  G. V. Berezhkova, Filamentary Crystals (Nauka, Moscow, 1969) [in Russian].
2.  B. V. Petukhov, "A Theory of Sharp Yield Point in Low-Dislocation Crystals," Zh. Tekhn. Fiz. 71 (11), 42-47 (2001) [Tech. Phys. (Engl. Transl.) 46 (11), 1389-1395 (2001)].
3.  M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge Univ. Press, New York, 2009).
4.  J. R. Greer and J. Th. M. de Hosson, "Plasticity in Small-Sized Metallic Systems: Intrinsic versus Extrinsic Size Effect," Prog. Mat. Sci. 56 (6), 654-724 (2001).
5.  A. A. Gruzdkov, E. V. Sitnikova, N. F. Morozov, and Yu. V. Petrov, "Thermal Effect in Dynamic Yielding and Fracture of Metals and Alloys," Math. Mech. Solid 14 (1-2), 72-87 (2009).
6.  A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, "An Invariant Form of the Dynamic Criterion for Yield of Metals," Fiz. Tverd. Tela 44 (11), 1987-1989 (2002) [Phys. Solid State (Engl. Transl.) 44 (11), 2080-2082 (2002)].
7.  A. A. Gruzdkov and Yu. V. Petrov, "On Temperature-Time Correspondence in High-Rate Deformation of Metals," Dokl. Physics 44, 114-116 (1999).
8.  M. M. Hutchinson, "High Upper Yield Point in Mild Steel," J. Iron Steel Inst. 186, 431-432 (1957).
9.  S. S. Brenner, "Plastic Deformation of Copper and Silver Whiskers," J. Appl. Phys. 28 (9), 1023-1026 (1957).
10.  R. V. Coleman, P. B. Price, and N. Cabera, "Slip of Zinc and Cadmium Whiskers," J. Appl. Phys. 28, 1360-1361 (1957).
11.  E. Cadoni, F. D'Aiuto, and C. Albertini, "Dynamic Behavior of Advanced High Strength Steel Used in the Automobile Structures," DYMAT 1, 135-141 (2009).
12.  E. N. Borodin and A. E. Mayer, "A Simple Mechanical Model for Grain Boundary Sliding in Nanocrystalline Metals," Mat. Sci. Engng A 532, 245-248 (2012).
13.  I. N. Borodin, A. E. Mayer, Yu. V. Petrov, and A. A. Gruzdkov, "Relaxation Mechanism of Plastic Deformation and Its Justification by an Example of Sharp Yield Point," Fiz. Tverd. Tela 57, (2014) [Phys. Solid State (Engl. Transl.)].
14.  V. S. Krasnikov, A. E. Mayer and A. P. Yalovets, "Dislocation Based High-Rate Plasticity Model and Its Application to Plate-Impact and Ultra Short Electron Irradiation Simulations," Int. J. Plasticity 27 (8), 1294-1308 (2011).
15.  A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, "Modeling of Plasticity and Fracture of Metals at Shock Loading," J. Appl. Phys. 113, 193508 (2013).
16.  A. E. Dudorov and A. E. Mayer, "Equations of Dislocation Dynamics and Kinetics is High-Rate Plastic Deformation," Vestnik Chelyabinsk Gos. Univ. 39 (254), No. 12, 48-56 (2011).
17.  I. S. Grigoriev and E.Z. Melikhov (Eds.), Physical Quantities. Reference Book (Energiya, Moscow, 1991) [in Russian].
Received 05 August 2014
Link to Fulltext
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100