Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-5pp.587-595

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 5 / 2014 | Next article >>
Yu.E. Ivanova and V.E. Ragozina, "On the Evolution Equation of Longitudinal Shock Waves in Elastic Media with Weak Inhomogeneity," Mech. Solids. 49 (5), 587-595 (2014)
Year 2014 Volume 49 Number 5 Pages 587-595
DOI 10.3103/S0025654414050100
Title On the Evolution Equation of Longitudinal Shock Waves in Elastic Media with Weak Inhomogeneity
Author(s) Yu.E. Ivanova (Institute for Automation and Control Processes, Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia, ivanova@iacp.dvo.ru)
V.E. Ragozina (Institute for Automation and Control Processes, Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia, razogina@vlc.ru)
Abstract Several problems of shock deformation in a nonlinearly elastic compressible medium with inhomogeneous properties are considered. The method of matched asymptotic expansions is used to show that the weak inhomogeneity and a certain relation between its order and the model nonlinearity order lead to different types of evolution quasilinear wave equations in regions far from the loaded boundary. The most interesting version of the arising evolution equation was obtained by joint change of the spatial coordinate scale and the related type of the semicharacteristic variable. The solution ideas are illustrated by an example of plane longitudinal shock wave in a medium with inhomogeneity in the wave motion direction. The obtained evolution equations become the well-known Cole-Hopf equation in the limit when passing to the isotropic medium.
Keywords nonlinear elastic compressible medium, continuum inhomogeneity, nonstationary problems, shock waves, perturbation method, evolution equations
References
1.  D. R. Bland, Nonlinear Dynamic Elasticity (Blaisdell, London, 1969; Mir, Moscow, 1972).
2.  A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media (Moskovskii Litsei, Moscow, 1998) [in Russian].
3.  A. A. Burenin and A. D. Chernyshov, "Shock Waves in an Isotropic Elastic Space," Prikl. Mat. Mekh. 42 (4), 711-717 (1978) [J. Appl. Math. Mech. (Engl. Transl.) 42 (4), 758-765 (1978)].
4.  M. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic Press, London, 1964; Mir, Moscow, 1967).
5.  J. D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, London, 1968; Mir, Moscow, 1972).
6.  A. H. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981; Mir, Moscow, 1984).
7.  J. D. Achenbakh and D. P. Reddy, "Note of Wave Propagation in Linearly Viscoelastic Media," ZAMP 18 (1), 141-144 (1967).
8.  L. A. Babicheva, G. I. Bykovtsev, and N. D. Verveiko, "Ray Method of Solving Dynamic Problems in Elastic-Viscoplastic Media," Prikl. Mat. Mekh. 37 (1), 145-155 (1973) [J. Appl. Math. Mech. (Engl. Transl.) 37 (1), 132-141 (1973)].
9.  Yu. E. Ivanova and V. E. Ragozina, "On Axisymmetric Motion of an Incompressible Elastic Medium under Impact Loading," Zh. Prikl. Mekh. Tekh. Fiz. 47 (6), 144-151 (2006) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 47 (6), 892-898 (2006)].
10.  V. E. Ragozina and Yu. E. Ivanova, "On Evolution Equations for Impact Deformation Problems with Consideration of Plane Discontinuity Surfaces," Vych. Mekh. Sploshn. Sred 2 (3), 82-95 (2009).
11.  A. A. Burenin, V. E. Ragozina, and Yu. E. Ivanova, "The Evolutionary Equation for Wave Processes of the Shift Deformation," Izv. Sarat. Gos. Univ. Ser. Mat. Mekh. Inf. 9 (4-2), 14-24 (2009).
12.  V. E. Ragozina and Yu. E. Ivanova, "A Mathematical Model of the Motion of Shear Shock Waves of Nonzero Curvature Based on Their Evolution Equation," Sib. Zh. Industr. Mat. 15 (1(49)), 77-85 (2012).
13.  U. K. Nigul and J. K. Engelbrekht, "Origination of Shock Wave in Elastic Space in One-Dimensional Nonlinear Transient Wave Processes Excited by Continuous Action," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 5, 69-82 (1972) [Mech. Solids (Engl. Transl.)].
14.  A. A. Burenin and Yu. A. Rossikhin, "Influence of Viscosity on the Nature of the Propagation of a Plane Extensional Shock Wave," Zh. Prikl. Mekh. Tekhn. Fiz. 31 (6), 13-17 (1990) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 31 (6), 807-810 (1990)].
15.  J. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).
16.  L. I. Sedov, Continuum Mechanics, Vol. 1 (Nauka, Moscow, 1973) [in Russian].
17.  T. Y. Thomas, Plastic Flow and Fracture in Solids (Academic Press, London, 1961; Mir, Moscow, 1964).
Received 20 November 2012
Link to Fulltext
<< Previous article | Volume 49, Issue 5 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100