Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-5pp.543-560

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 5 / 2014 | Next article >>
D.L. Bykov, A.V. Kazakov, D.N. Konovalov, V.P. Mel'nikov, Yu.M. Milyokhin, V.A. Peleshko, and D.N. Sadovnichii, "Law of Damage Accumulation and Fracture Criteria in Highly Filled Polymer Materials," Mech. Solids. 49 (5), 543-560 (2014)
Year 2014 Volume 49 Number 5 Pages 543-560
DOI 10.3103/S0025654414050069
Title Law of Damage Accumulation and Fracture Criteria in Highly Filled Polymer Materials
Author(s) D.L. Bykov (Central Scientific Research Institute for Engineering (TsNIIMash), ul. Pionerskaya 4, Korolev, Moscow Oblast, 141070 Russia, elemarta@mail.ru)
A.V. Kazakov (Central Scientific Research Institute for Engineering (TsNIIMash), ul. Pionerskaya 4, Korolev, Moscow Oblast, 141070 Russia, avk__45@mail.ru)
D.N. Konovalov (OT-Kontakt Ltd., ul. Aviamotornaya 2, Moscow, 111020 Russia, dimkonov@yandex.ru)
V.P. Mel'nikov (The Federal Centre for Dual-Use Technologies "Soyuz," ul. Akademika Zhukova 42, Dzerzhinsky, Moscow oblast, 140090 Russia, vmelnikov@inbox.ru)
Yu.M. Milyokhin (fcdt@monnet.ru, The Federal Centre for Dual-Use Technolo)
V.A. Peleshko (Central Scientific Research Institute for Engineering (TsNIIMash), ul. Pionerskaya 4, Korolev, Moscow Oblast, 141070 Russia, peleshkobva@inbox.ru)
D.N. Sadovnichii (The Federal Centre for Dual-Use Technologies "Soyuz," ul. Akademika Zhukova 42, Dzerzhinsky, Moscow oblast, 140090 Russia)
Abstract We present the results of a large series of experiments aimed at the study of laws of damage accumulation and fracture in highly filled polymer materials under loading conditions of various types: monotone, repeated, low- and high-cycle, with varying type of stress state, dynamic (in general, more than 50 programs implemented on specimens from one lot of material). The data obtained in these test allow one to make conclusions about the constitutive role of the attained maximum of strain intensity when estimating the accumulated damage in the process of uniaxial tension by various programs (in particular, an additional cyclic deformation below the preliminary attained strain maximum does not affect the limit values of strain and stress in the subsequent active extension), about the strong influence of the stress state on the deformation and fracture, about the specific features of the nonlinear behavior of the material under the shock loading conditions and its influence on the repeated deformation.

All tests are described (with an accuracy acceptable in practical calculations, both with respect to stresses and strains in the process of loading and at the moment of fracture) in the framework of the same model of nonlinear viscoelasticity with the same set of constants. The constants of the proposed model are calculated according to a relatively simple algorithm by using the results of standard uniaxial tension tests with constant values of the strain rate and hydrostatic pressure (each test for 2-3 levels of these parameters chosen from the ranges proposed in applications, each loading lasts until the fracture occurs, and one of the tests contains an intermediate interval of total loading and repeated loading) and one axial shock compression test if there are dynamic problems in the applications. The model is based on the use of the criterion fracture parameter which, in the class of proportional loading processes, is the sum of partial increments of the strain intensity on active segments of the process (where the strain intensity is at its historical maximum) with the form of the stress state and the intensity of strain rates taken into account.
Keywords highly filled polymer materials, tests, constitutive relations, damage accumulation, fracture criterion
References
1.  L. M. Kachanov, "On the Time of Fracture under Creeping Conditions," Izv. Akad. Nauk SSSR. OTN, No. 8, 26-31 (1958).
2.  Yu. N. Rabotnov, "On Mechanism of Long Fracture," in Problems of Strength of Materials and Structures (Izd-vo AN SSSR, Moscow, 1959), pp. 5-7 [in Russian].
3.  A. A. Il'yushin, "On a Theory of Long Strength," Inzh. Zh. MTT, No. 3, 21-35 (1967).
4.  A. A. Il'yushin and B. E. Pobedrya, Foundations of Mathematical Theory of Thermoviscoelasticity (Nauka, Moscow, 1970) [in Russian].
5.  V. V. Moskvitin, Resistance of Viscoplastic Materials with Regard to Charges of Solid-Propellant Rocket Engines (Nauka, Moscow, 1972) [in Russian].
6.  S. R. Swanson and L. W. Christensen, "A Constitutive Formulation for High Elongation Propellants," J. Spacecraft Rockets 20, 559-566 (1983).
7.  J. Simo, "On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects," Comp. Meth. Appl. Engng 60, 153-173 (1987).
8.  S. W. Park and R. A. Schapery, "A Viscoelastic Constitutive Model for Particulate Composites with Growing Damage," Int. J. Solids Struct. 34 (8), 931-947 (1997).
9.  S. Özüpek and E. V. Becker, "Constitutive Equations for Solid Propellants," J. Engng Mater. Technol. 119 (2), 125-132 (1997).
10.  G. D. Jung and S. K. Youn, "A Nonlinear Viscoelastic Constitutive Model of Solid Propellant," Int. J. Solids Struct. 36 (25), 3755-3777 (1999).
11.  D. L. Bykov and D. N. Konovalov, "Nonlinear Endochronous Theory of Aging Viscoelastic Materials," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 63-76 (2002) [Mech. Solids (Engl. Transl.) 37 (4), 52-62 (2002)].
12.  A. A. Adamov, V. P. Matveenko, N. A. Trufanov, and I. N. Shardakov, Methods of Applied Viscoelasticity (Izd-vo UrO RAN, Ekaterinenburg, 2003) [in Russian].
13.  F. Xu, N. Aravas, and P. Sofronis, "Constitutive Modeling of Solid Propellant Materials with Evolving microstructural Damage," J. Mech. Phys. Solids 56 (5), 2050-2073 (2008).
14.  T. A. Belyakova, Yu. P. Zezin, and E. V. Lomakin, "Thermovisco-Hyperelastic Behavior of Elastomeric Materials Modified by Filler Nanoparticles," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 63-81 (2010) [Mech. Solids (Engl. Transl.) 45 (4), 546-561 (2010)].
15.  D. L. Bykov and V. A. Peleshko, "Constitutive Relations for Strain and Failure of Filled Polymer Materials in Dominant Axial Tension Processes under Various Barothermal Conditions," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 40-65 (2008) [Mech. Solids (Engl. Transl.) 43 (6), 870-891 (2008)].
16.  D. L. Bykov, D. N. Konovalov, and V. A. Peleshko, "Constitutive Relations for Calculating the Processes of Quasistatic Deformation, Damage, and Fracture of Bodies (Including Those with Concentrators) Made of Filled Polymer Materials," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 34-54 (2011) [Mech. Solids (Engl. Transl.) 46 (6), 839-855 (2011)].
17.  D. L. Bykov, A. V. Kazakov, D. N. Konovalov, et al., "Identification of the Model of Nonlinear Viscoelasticity of Filled Polymer Materials in Millisecond Time Range," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 52-57 (2012) [Mech. Solids (Engl. Transl.) 47 (6), 641-645 (2012)].
18.  D. L. Bykov and V. A. Peleshko, "Constitutive Relations of Strain, Anisotropic Degradation, and Fracture of Filled Polymer Materials in Prevailing-Tension Processes with Varying Axis Direction and Relaxations," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 59-67 (2009) [Mech. Solids (Engl. Transl.) 44 (5), 705-711 (2009)].
19.  V. E. Apet'yan, D. L. Bykov, and V. A. Peleshko, "Deformation and Fracture of a Filled Polymer Material with Anisotropic Degradation Caused by Its Preliminary Loading: Tests and Their Modeling," Kosmonavtika Raketostr., No. 3 (60), 52-60 (2010).
20.  Yu. M. Milekhin, A. N. Klyuchnikov, V. S. Popov, and V. P. Mel'nikov, "Adjoint Problem for Modeling Intraballistic Characteristics of Solid-Propellant Rocket Motors," Fiz. Goreniya i Vzryva 48 (1), 38-46 (2012) [Comb. Expl. Shock Waves (Engl. Transl.) 48 (1), 33-40 (2012)].
21.  E. V. Lomakin and A. M. Mel'nikov, "Plane Stress State Problems for Notched Bodies Whose Plastic Properties Depend on the Form of the Stress State," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 77-89 (2011) [Mech. Solids (Engl. Transl.) 46 (1), 62-69 (2011)].
22.  E. V. Lomakin and B. N. Fedulov, "Plane Strain Extension of a Strip Made of a Material with Stress State Type Dependent Properties and Weakened by Cuts with Circular Base," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 80-87 (2013) [Mech. Solids (Engl. Transl.) 48 (4), 424-430 (2013)].
Received 29 May 2014
Link to Fulltext
<< Previous article | Volume 49, Issue 5 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100