Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2014-2pp.156-161

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 49, Issue 2 / 2014 | Next article >>
V.M. Aleksandrov, "Analytic Methods in Problems for Finite Bodies with Improperly Mixed Boundary Conditions," Mech. Solids. 49 (2), 156-161 (2014)
Year 2014 Volume 49 Number 2 Pages 156-161
DOI 10.3103/S0025654414020058
Title Analytic Methods in Problems for Finite Bodies with Improperly Mixed Boundary Conditions
Author(s) V.M. Aleksandrov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str.1, Moscow, 119526 Russia)
Abstract Elastic finite bodies whose surface consists of pieces of coordinate surfaces are considered. The boundary conditions posed on one of such pieces can be different from the boundary conditions on the other pieces. Such problems are said to be improperly mixed. An survey of analytic methods for solving such problems is given.
Keywords contact interaction mechanics, finite body
References
1.  G. Ya. Popov and N. A. Rostovtsev, "Contact (Mixed) Problems of Elasticity," in Proc. 2nd All-Union Congress on Theoret. and Appl. Mechanics. Mechanics of Rigid Body, Vol. 3 (Nauka, Moscow, 1966), pp. 235-252 [in Russian].
2.  L. A. Galin (Editor), The Development of Theory of Contact Problems in USSR, (Nauka, Moscow, 1976) [in Russian].
3.  I. I. Vorovich, V. M. Alexandrov, and V. A. Babeshko, Nonclassical Mixed Problems of Elasticity (Nauka, Moscow, 1974) [in Russian].
4.  P. O. Gafaian and K. S. Chobanian, "Solution of a Contact Problem for an Elastic Rectangle," Prikl. Mat. Mekh. 30 (3), 569-575 (1966) [J. Appl. Math. Mech. (Engl. Transl.) 30 (3), 676-684 (1967)].
5.  N. Kh. Arutiunian and B. L. Abramian, "On the Impression op a Rigid Die into an Elastic Sphere," Prikl. Mat. Mekh. 28 (6), 1101-1105 (1964) [J. Appl. Math. Mech. (Engl. Transl.) 28 (6), 1322-1327 (1964)].
6.  V. M. Alexandrov, "On the Solution of a Class of Pair Equations," Dokl. Akad. Nauk SSSR 210 (1), 55-58 (1973).
7.  V. M. Aleksandrov, "On a Method of Reducing Dual Integral Equations and Dual Series Equations to Infinite Algebraic Systems," Prikl. Mat. Mekh. 39 (2), 324-332 (1975) [J. Appl. Math. Mech. (Engl. Transl.) 39 (2), 303-311 (1975)].
8.  B. M. Nuller, "Contact Problems for an Elastic Semi-Infinite Cylinder," Prikl. Mat. Mekh. 34 (4), 620-631 (1970) [J. Appl. Math. Mech. (Engl. Transl.) 34 (4), 590-601 (1970)].
9.  V. M. Alexandrov, "A Method of Uniaxial Solutions in Contact Problems of Elasticity for Finite Bodies," Izv. SKNTs VSh. Estestv. Nauki, No. 4, 12-16 (1974).
10.  V. M. Alexandrov and E. V. Kovalenko, "Periodic Contact Problems for Elastic Strip," Izv. Akad. Armyan. SSR Ser. Mat. 30 (4), 18-33 (1977) [Soviet J. Contemporary Math. Anal. (Engl. Transl.)]
11.  F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977) [in Russian].
12.  L. I. Sedov, Plane Problems of Hydrodynamics and Aerodynamics (Nauka, Moscow, 1966) [in Russian].
13.  N. A. Rostovtsev, "On Some Cases of Contact Problem," Ukrain. Mat. Zh. 6 (3), 326-332 (1954) [Ukrainian Math. J. (Engl. Transl.)].
Received 03 October 2010
Link to Fulltext
<< Previous article | Volume 49, Issue 2 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100