Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-3pp.334-341

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
M. Cacho, P.M. López-Reyes, and A. Lorenzana, "Exact Statement of the Instability Problem for Frames and Its Direct Numerical Solution," Mech. Solids. 49 (3), 334-341 (2014)
Year 2014 Volume 49 Number 3 Pages 334-341
DOI 10.3103/S0025654414030091
Title Exact Statement of the Instability Problem for Frames and Its Direct Numerical Solution
Author(s) M. Cacho (ITAP, University of Valladolid, Paseo del Cauce 59, Valladolid, 47011 Spain, cacho@eis.uva.es)
P.M. López-Reyes (CARTIF Centro Tecnológico, Parque Tecnológico de Boecillo 205, Valladolid, 47151 Spain, pablop@cartif.es)
A. Lorenzana (ITAP, University of Valladolid, Paseo del Cauce 59, Valladolid, 47011 Spain, ali@eis.uva.es)
Abstract A general approach for the systematic evaluation of the critical buckling load and the determination of the buckling mode is presented. The Navier-Bernoulli beam model is considered, having the possibility of variable cross-section under any type of load (including pressures and thermal loading). With this purpose, the equilibrium equations of each beam element in its deformed configuration under the hypothesis of infinitesimal strains and displacements is considered, resulting in a system of differential equations with variable coefficients for each element. To obtain the nonlinear response of the frame, one should impose the compatibility of displacements and the equilibrium of forces and moments in each beam-end, also in the deformed configuration. The solution is obtained by requiring that the total variation of potential energy is zero at the instant of buckling. The objective of this work is to develop a systematic method to determine the critical buckling load and the buckling mode of any frame without using the common simplifications usually assumed in matrix analysis or finite element approaches. This way, precise results can be obtained regardless of the discretization done.
Keywords critical buckling load, buckling mode, variable inertia, thermal loading
References
1.  A. Chajes, Principles of Structural Stability Theory (Prentice Hall, New Jersey, 1974).
2.  S. Timoshenko, Theory of Elastic Stability (McGraw-Hill, New York, 1963).
3.  M. Crisfield, Non-linear Finite Element Analysis of Solids and Structures. Vol.1: Essentials (John Wiley & Sons, New York, 2000).
4.  W. Koiter, "On the Principle of Stationary Complementary Energy in the Nonlinear Theory of Elasticity," SIAM J. Appl. Math. 25 (3), 424-434 (1973).
5.  S. Machado, "Non-Linear Buckling and Postbuckling Behavior of Thin-Walled Beams Considering Shear Deformation," Int. J. Non-Lin. Mech. 43, 345-365 (2008).
6.  G. Simitses and D. Hodges, Fundamentals of Structural Stability (Elsevier Inc., Massachusetts, 2006).
7.  J. Marsden and T. Hughes, Mathematical Foundations of Elasticity (Dover Publications, New York, 1994).
8.  R. Burden and J. Faires, Numerical Analysis (Thomson, Mexico, 1998).
9.  D. Fertis, Nonlinear Structural Engineering (Springer-Verlag, Berlin, Heidelberg, 2006).
10.  D. A. Gulyaev, A. A. Zagordan, and V. I. Shalashilin, "Some Nonconventional Buckling Problems for a Beam under Transverse Loads," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 111-117 (2006) [Mech. Solids (Engl. Transl.) 41 (2), 87-92 (2006)].
11.  COSMOS/M, v.2.95 (Structural Research and Analysis Corp., Los Angeles, 2006).
12.  V. A. Postnov and G. A. Tumashik, "Stability Optimization of a Cantilever Beam Subjected to a Non-Conservative Compressive Force," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 93-103 (2006) [Mech. Solids (Engl. Transl.) 41 (2), 72-80 (2006)].
13.  H. Chen and G. E. Blandford, "Work-Increment-Control Method for Non-Linear Analysis," Int. J. Numer. Meth. Engng 36, 909-930 (1993).
Received 17 March 2011
Link to Fulltext
<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100