Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-3pp.270-279

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
A.A. Burenin, L.V. Kovtanyuk, and I.A. Terletskii, "Irreversible Deformation with Subsequent Unloading of a Spherical Viscoelastoplastic Layer," Mech. Solids. 49 (3), 270-279 (2014)
Year 2014 Volume 49 Number 3 Pages 270-279
DOI 10.3103/S0025654414030030
Title Irreversible Deformation with Subsequent Unloading of a Spherical Viscoelastoplastic Layer
Author(s) A.A. Burenin (Institute for Automation and Control Processes, Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia, burenin@iacp.dvo.ru)
L.V. Kovtanyuk (Institute for Automation and Control Processes, Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia, lk@iacp.dvo.ru)
I.A. Terletskii (Far East Federal University, Sukhanova 8,, Vladivostok, 690000 Russia, iterlik@mail.ru)
Abstract Analytic solutions are obtained for a sequence of one-dimensional quasistatic problems describing viscoelastic deformation processes in the material of a hollow ball and the plastic flow nucleation and evolution processes occurring in the ball as the pressure on the outer boundary increases. The unloading process under slow removal of the loading pressure is considered as well. The stress fields and the elastic and plastic strain fields in the spherical layer material, the law of motion of the elastoplastic boundary, and the residual stress level and distribution are computed. It is assumed that at the stage preceding the plastic flow the material obeys the viscoelastic Voigt model and the loading surface is determined by the von Mises plastic flow condition.
Keywords elasticity, viscosity, plasticity
References
1.  A. A. Burenin, L. V. Kovtanyuk, and M. V. Polonik, "The Possibility of Reiterated Plastic Flow at the Overall Unloading of an Elastoplastic Medium," Dokl. Ross. Akad. Nauk 375 (6), 767-769 (2000) [Dokl. Phys. (Engl. Transl.) 45 (12), 694-696 (2000)].
2.  A. A. Burenin and L. V. Kovtanyuk, "Residual Stresses near a Cylindrical Cavity in an Ideal Elastoplastic Medium," in Problems of Mechanics of Nonelastic Strains. Collection of Papers Dedicated to D. D. Ivlev on the Occasion of His 70th Birthday (Fizmatlit, Moscow, 2001), pp. 75-99 [in Russian].
3.  A. A. Burenin, L. V. Kovtanyuk, and M. V. Polonik, "The Formation of a One-Dimensional Residual Stress Field in the Neighbourhood of a Cylindrical Defect in the Continuity of an Elastoplastic Medium," Prikl. Mat. Mekh. 67 (2), 315-325 (2003) [J. Appl. Math. Mech. (Engl. Transl.) 67 (2), 283-292 (2003)].
4.  A. A. Burenin, L. V. Kovtanyuk, and E. V. Murashkin, "On the Residual Stresses in the Vicinity of a Cylindrical Discontinuity in a Viscoelastoplastic Material," Zh. Prikl. Mekh. Tekhn. Fiz. 47 (2), 110-119 (2006) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 47 (2), 241-248 (2006)].
5.  L. V. Kovtanyuk and E. V. Murashkin, "Onset of Residual Stress Fields near Solitary Spherical Inclusions in a Perfectly Elastoplastic Medium," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 94-104 (2009) [Mech. Solids (Engl. Transl.) 44 (1), 79-87 (2009)].
6.  A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity (Fizmatlit, Moscow, 2001) [in Russian].
7.  D. D. Ivlev, "On the Determination of Displacements in Elastoplastic Problems of the Theory of Ideal Plasticity," in Progress in Mechanics of Deformable Media (Dedicated to Academician B. G. Galerkin on the Occasion of His 100th Birthday) (Nauka, Moscow, 1957), pp. 236-240 [in Russian].
8.  V. I. Gorelov, "Effect of High Pressure on Mechanical Characteristics of Aluminum Alloys," Zh. Prikl. Mekh. Tekhn. Fiz., 25 (5), 157-158 (1984) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 25 (5), 813-814 (1984)].
9.  A. A. Bazhin and E. V. Murashkin, "Modeling of the Residual Stress Relaxation Process in Metalware under the Action of Intensive Working Loads," in Applied Problems of Deformable Solid Mechanics and Progressive Technologies in Mechanical Engineering, No. 3, Pt. 1 (IMiM DVO RAN, Komsomolsk-on-Amur, 2009), pp. 98-106 [in Russian].
Received 06 June 2011
Link to Fulltext
<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100