Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-3pp.253-269

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
V.A. Kovalev and Yu.N. Radaev, "Estimates of Azimuthal Numbers Associated with Elementary Elliptic Cylinder Wave Functions," Mech. Solids. 49 (3), 253-269 (2014)
Year 2014 Volume 49 Number 3 Pages 253-269
DOI 10.3103/S0025654414030029
Title Estimates of Azimuthal Numbers Associated with Elementary Elliptic Cylinder Wave Functions
Author(s) V.A. Kovalev (Moscow City Government University of Management, ul. Sretenka 28, Moscow, 107045 Russia, vlad_koval@mail.ru)
Yu.N. Radaev (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, radayev@ipmnet.ru)
Abstract The paper deals with issues related to the construction of solutions, -periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.
Keywords elliptic cylinder, thermoelastic field, Mathieu equation, eigenvalue, azimuthal number, spectral problem, wave number, wave function, diagonalization, Gershgorin circle, Cassinian oval
References
1.  V. A. Kovalev and Yu. N. Radaev, Wave Problems in Field Theory and Thermomechanics (Izd-vo Saratov Univ., Saratov, 2010) [in Russian].
2.  Yu. N. Radaev and M. V. Taranova, "Cross-Coupled Thermoelastic Wave Field in a Long Waveguide with Elliptical Cross-Section," Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost. 1 (9), 183-196 (2011).
3.  E. Mathieu, Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique," J. Math. Pures et Appl. 13, 137-203 (1868).
4.  G. W. Hill, "On the Part of the Motion of Lunar Perigee which is a Function of the Mean Motions of the Sun and Moon," Acta Math. 8 (1), 1-36 (1886).
5.  M. J. O. Strutt, Lame, Mathieu and Related Functions in Physics and Technology (Springer, Berlin, 1932; Gostekhizdat Ukrainy, Kharkov-Kiev, 1935).
6.  N. W. MacLachlan, Theory and Applications of Mathieu Functions (Clarendon, Oxford, 1947; Izd-vo Inostr. Liter., Moscow, 1953).
7.  G. Sansone, Ordinary Differential Equations, Vol. 1 (Bologna, 1948; Izd-vo Inostr. Lit., Moscow, 1953).
8.  E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955; Izd-vo Inostr. Lit., Moscow, 1958).
9.  F. M. Arscott, Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions (Pergamon Press, Oxford, 1964).
10.  M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York: 1972; Nauka, Moscow, 1979).
11.  J. Kampé de Fériet, R. Campbell, G. Petiau, and T. Vogel, Functions of Mathematical Physics. Reference Book (Centre National de la Recherche Scientitique, Paris, 1957; Fizmatgiz, Moscow, 1963).
12.  M. A. Naimark, Linear Differential Operators (Gostekhizdat, Moscow, 1954) [in Russian].
13.  V. A. Marchenko, Spectral Theory of Sturm-Liouville Operators (Naukova Dumka, Kiev, 1972) [in Russian].
14.  B. M. Levitan and I. S. Sargsyan, Sturm-Liouville and Dirac Operators (Nauka, Moscow, 1988) [in Russian],
15.  F. R. Gantmakher, Theory of Matrices (Gostekhizdat, Moscow, 1953) [in Russian].
16.  J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon, Oxford, 1965; Nauka, Moscow, 1970).
17.  R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, London, 1960; Nauka, Moscow, 1969).
18.  R. A. Horn and Ch. R. Johnson, Matrix Analysis (Cambridge Univ. Press, NY, 1985; Mir, Moscow, 1989).
19.  A. M. Ostrowsky, "Über die Determinanten mit überwiegender Hauptdiagonale," Comment. Math. Helv. 10, 69-96 (1937).
Received 31 July 2012
Link to Fulltext
<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100