Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-5pp.537-545

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 5 / 2013 | Next article >>
S.E. Aleksandrov and R.V. Goldstein, "Stress-Strain State in an Elastoplastic Cylindrical Tube with Free Ends. I. General Solution," Mech. Solids. 48 (5), 537-545 (2013)
Year 2013 Volume 48 Number 5 Pages 537-545
DOI 10.3103/S0025654413050099
Title Stress-Strain State in an Elastoplastic Cylindrical Tube with Free Ends. I. General Solution
Author(s) S.E. Aleksandrov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, sergei_alexandrov@yahoo.com)
R.V. Goldstein (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, goldst@ipmnet.ru)
Abstract We obtain a general solution for the stress-strain state in an elastoplastic tube whose ends are stress-free. The tube is subjected to internal and external pressures which can vary in time rather arbitrarily. But it is assumed that the radius of the elastoplastic boundary does not decrease during the entire deformation process. The tube material obeys a yield condition depending on the mean stress. The corresponding yield surface has the shape of a cone in the space of principal stresses. The theory of plastic flow is used. The plastic potential is taken in the form of the von Mises condition. Thus, the associated plastic flow law is not satisfied, and the material is plastically incompressible. Numerical methods are only needed for successively solving several transcendental equations and calculating ordinary integrals.
Keywords cylindrical tube, elastoplastic deformation, yield condition, mean stress
References
1.  R. Hill, The Mathematical Theory of Plasticity (Clarendon, Oxford, 1950; Gostekhizdat, Moscow, 1956).
2.  A. Mendelson, Plasticity Theory and Application (Macmillan, New York, 1968).
3.  V. V. Sokolovskii, The Theory of Plasticity (Vysshaya Shkola, Moscow, 1969) [in Russian].
4.  J. Chakrabarty, Theory of Plasticity (McGraw-Hill, New York, 1987).
5.  S. E. Aleksandrov and R. V. Goldstein, "Calculation of the Pipeline Wall Thickness under Internal Pressure at an Arbitrary Law of Hardening," Deform. Razrush. Mat., No. 9, 15-20 (2011) [Russ. Metallurgy (Metally) (Engl. Transl.) 2012 (10), 873-878 (2012)].
6.  D. W. A. Rees, "Autofrettage Theory and Fatigue Life of Open-Ended Cylinders," J. Strain Anal. Engng Des. 25 (2), 109-165 (1990).
7.  D. C. Drucker and W. Prager, "Soil Mechanics and Plastic Analysis for Limit Design," Quart. Appl. Math. 10 (2), 157-165 (1952).
8.  W. A. Spitzig, R. J. Sober, and O. Richmond, "The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory," Metallurg. Trans. 7A (11), 1703-1710 (1976).
9.  A. S. Kao, H. A. Kuhn, W. A. Spitzig, and O. Richmond, "Influence of Superimposed Hydrostatic Pressure on Bending Fracture and Formability of a Low Carbon Steel Containing Globular Sulfides," Trans. ASME. J. Engng Mater. Technol. 112 (1), 26-30 (1990).
10.  C. D. Wilson, "A Critical Reexamination of Classical Metal Plasticity," Trans. ASME. J. Appl. Mech. 69, 63-68 (2002).
11.  P. S. Liu, "Mechanical Behavior of Porous Metals under Biaxial Tensile Loads," Mater. Sci. Engng A422, 176-183 (2006).
12.  V. N. Nikolaevskii, Mechanical Properties of Soils and Plasticity in Mechanics of Deformable Solids, Itogi Nauki i Tekhniki [Progress in Science and Technology] (VINITI, Moscow, 1972), [in Russian],
13.  A. Yu. Ishlinskii, "On Plane Motion of Sand," Ukrain. Mat. Zh. 6 (4), 430-441 (1954) [Ukrain. Math. J. (Engl. Transl.)].
14.  D. W. A. Rees, Basic Engineering Plasticity (Elsevier, Amsterdam, 2006).
15.  O. A. Kilikovskaya and N. V. Ovchinnikova, "Influence of Material Hardening and Compressibility on the Solution of Elastoplastic Deformation Problems for a Space with a Cylindrical Cavity," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 75-91 (2012) [Mech. Solids (Engl. Transl.) 47 (1), 57-70 (2012)].
16.  S. E. Aleksandrov and R. V. Goldstein, "Effect of the Mean-Stress Dependence of Yield Conditions on Residual Stresses and Strains," Dokl. Ross. Akad. Nauk 438 (2), 185-188 (2011) [Dokl. Phys. (Engl. Transl.) 56 (5), 279-282 (2011)].
17.  S. Alexandrov, Y.-R. Jeng, and E. Lyamina, "Influence of Pressure-Dependency of the Yield Criterion and Temperature on Residual Stresses and Strains in a Thin Disk," Struct. Engng Mech. 44, 289-303 (2012).
Received 06 April 2013
Link to Fulltext
<< Previous article | Volume 48, Issue 5 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100