Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-5pp.525-536

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 48, Issue 5 / 2013 | Next article >>
V.E. Egorushkin and V.E. Panin, "Physical Foundations of Nonlinear Fracture Mechanics," Mech. Solids. 48 (5), 525-536 (2013)
Year 2013 Volume 48 Number 5 Pages 525-536
DOI 10.3103/S0025654413050087
Title Physical Foundations of Nonlinear Fracture Mechanics
Author(s) V.E. Egorushkin (Institute of Strength Physics and Material Science, Siberian Branch of the Russian Academy of Sciences, Akademicheskii pr-t 2/4, Tomsk, 634021 Russia)
V.E. Panin (Institute of Strength Physics and Material Science, Siberian Branch of the Russian Academy of Sciences, Akademicheskii pr-t 2/4, Tomsk, 634021 Russia, paninve@ispms.tsc.ru)
Abstract A survey of the authors' papers dealing with the physical foundations of multilevel nonlinear fracture mechanics is presented. The gauge theory of defects is used to obtain wave equations that predict the possibility of a crack development as a nonlinear wave process. Under viscous fracture conditions, nonlinear fracture waves disperse forming local mesovortices in the form of dynamic rotations. Experimental data confirming the wave theory predictions are given. The fracture development is related to the structure-phase breakup of a deformable crystal in the regions of its strong curvature.
Keywords physics, mechanics, fracture, gauge theory, nonlinear wave, dynamic rotation
References
1.  A. Yu. Ishlinskii and D. D. Ivlev, The Mathematical Theory of Plasticity (Fizmatlit, Moscow, 2001) [in Russian].
2.  R. V. Goldstein and N. M. Osipenko, "Model of Brittle Fracture of Porous Materials in Compression," Mat. Modelirovanie Sist. Prots., No. 17, 47-57 (2009).
3.  N. F. Morozov, Mathematical Problems of Crack Theory (Nauka, Moscow, 1984) [in Russian].
4.  V. Z. Parton and E. M. Morozov, Foundations of Fracture Mechanics (Izd-vo LKI, Moscow, 2007) [in Russian].
5.  G. P. Cherepanov, Fracture Mechanics (Inst. Komp. Issled., Izhevsk, 2012) [in Russian].
6.  A. Carpinteri, F. Cardone, and G. Lacidogna, "Energy Emissions from Failure Phenomena: Mechanical, Electromagnetic, Nuclear," Experim. Mech. 50, 1235-1243 (2010).
7.  G. C. Sih, "Multi-Scale and Multi-Order Singularity Approach to Non-Equilibrium Mechanics: Coupling of Atomic-Micro-Macro Damage," Adv. Mech. 6, 232-250 (2010).
8.  G. I. Barenblatt, "Scaling Phenomena in Fatigue and Fracture," Int. J. Fract. 138 (1-4), 19-35 (2006).
9.  L. R. Botvina, Fracture. Kinetics, Mechanisms, General Laws (Nauka, Moscow, 2008) [in Russian].
10.  M. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Prentice-Hall, New Jersey, 1999).
11.  T. H. Courtney, Mechanical Behavior of Materials (McGraw-Hill, Michigan, 2000).
12.  M. F. Ashby and D. R. H. Jones, Engineering Materials. Complete Course, Ed. by S. L. Bazhenov (Izdat Dom "Intellekt," Moscow, 2012) [in Russian].
13.  V. E. Panin, "Fracture Mesomechanics of a Solid as a Nonlinear Hierarchically Organized System," in Proc. Eur. Conf. Fracture 19, Kazan, Russia, 2012 (Kazan Sci. Center RAS, Kazan, 2012) (electronic resources).
14.  V. E. Panin, V. E. Egorushkin, L. S. Derevyagina, and E. E. Deryugin, "Nonlinear Wave Processes of Crack Propagation in Brittle and Brittle-Ductile Fracture," Fiz. Mezomekh. 15 (6), 5-13 (2012) [Phys. Mesomech. (Engl. Transl.) 16 (3), 183-190 (2013)].
15.  M. Onami (Editor), Introduction to Micromechanics (Mir, Moscow, 1987) [in Russian].
16.  A. Kadich and D. Edelen, A Gauge Theory of Dislocations and Disclinations (Springer, Berlin, Heidelberg, New York, 1983; Mir, Moscow, 1987).
17.  K. Kondo, "Memoirs of the Unifying Study of the Basic Problems in Engineering Sciences by Means of Geometry," Gakujutsu Bunken Fukyu-ka i 1 (453), (1955).
18.  H. Kleinert, Gauge Fields in Condensed Matter. Stresses and Defects (World Scientific Publ., Singapore, 1989).
19.  E. Kröner, Gauge Field Theories of Defects in Solids (Max Plank Inst., Stuttgart 1982).
20.  D. G. B. Edelen and D. C. Lagoudas, Gauge Theory and Defects in Solids (North-Holland, Amsterdam, 1988).
21.  V. E. Panin, Yu. V. Grinyaev, V. E. Egorushkin, et al., "Excited State Spectrum and Vortex Mechanical Field in a Deformable Crystal," Izv. Vyssh. Uchebn. Zaved. Fiz. 30 (1), 36-51 (1987) [Sov. Phys. J. (Engl. Transl.) 30 (1), 34 (1987)].
22.  V. E. Egorushkin, "Gauge Dynamic Theory of Defects in Nonuniformly Deformed Media with a Structure. Interface Behavior," Izv. Vyssh. Uchebn. Zaved. Fiz. 33 (2), 51-68 (1990) [Sov. Phys. J. (Engl. Transl.) 33 (2), 135-149 (1990)].
23.  V. E. Egorushkin, "Dynamics of Plastic Deformation. Waves of Localized Plastic Deformation in Solids," Izv. Vyssh. Uchebn. Zaved. Fiz. 35 (4), 19-41 (1992) [Russ. Phys. J. (Engl. Transl.) 35 (4), 316-334 (1992)].
24.  V. E. Panin and V. E. Egorushkin, "Curvature Solitons as Generalized Structure Carriers of Plastic Deformation and Fracture," Fiz. Mezomekh. 16 (3), 5-24 (2013) [Phys. Mesomech. (Engl. Transl.)].
25.  M. A. Guzev and A. A. Dmitriev, "Bifurcation Behavior of Potential Energy of a System of Particles," Fiz. Mezomekh. 16 (3), 25-31 (2013) [Phys. Mesomech. (Engl. Transl.)].
26.  L. S. Derevyagina, V. E. Panin, N. A. Strelkova, et al., "Study of Fracture at Meso- and Macroscale Levels of Submicrocrystalline α-Fe in Uniaxial Tension," Deform. Razrush. Mater., No. 2, 20-24 (2006).
27.  V. E. Panin, E. A. Mel'nikova, O. B. Perevalova, et al., "Nanocrystalline Structure Formation in EK-181 Steel Surface Layers on Ultrasonic Treatment," Fiz. Mezomekh. 12 (2), 83-93 (2009) [Phys. Mesomech. (Engl. Transl.) 12 (3-4), 150-159 (2009)].
28.  L. I. Kveglis, F. M. Noskov, V. V. Kazantseva, R. B. Abylkolyva, A. A. Kalitova, and M. N. Volochaeva, "Anomalously Fast Macroscopic Migration," Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg., No. 12, 43-45 (2012) [Steel in Transl. (Engl. Transl.) 42 (12), 817-819 (2012)].
29.  V. E. Panin, A. V. Panin, and D. D. Moiseenko, "Physical Mesomechanics of a Deformed Solid as a Multilevel System. II. Chessboard-Like Mesoeffect of the Interface in Heterogeneous Media in External Fields," Fiz. Mezomekh. 9 (6), 5-15 (2006) [Phys. Mesomech. (Engl. Transl.) 10 (1-2), 5-14 (2007)].
30.  V. E. Panin and V. E. Egorushkin, "Nanostructural States in Solids," Fiz. Met. Metalloved. 110 (5), 486-496 (2010) [Phys. Met. Metallogr. (Engl. Transl.) 110 (5), 464-473 (2010)].
Received 21 June 2013
Link to Fulltext
<< Previous article | Volume 48, Issue 5 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100