| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 48, Issue 4 / 2013 | Next article >> |
L.D. Akulenko, M.I. Ivanov, L.I. Korovina, and S.V. Nesterov, "Basic Properties of Natural Vibrations of an Extended Segment of a Pipeline," Mech. Solids. 48 (4), 458-472 (2013) |
Year |
2013 |
Volume |
48 |
Number |
4 |
Pages |
458-472 |
DOI |
10.3103/S0025654413040146 |
Title |
Basic Properties of Natural Vibrations of an Extended Segment of a Pipeline |
Author(s) |
L.D. Akulenko (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, gavrikov@ipmnet.ru)
M.I. Ivanov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, m-i-ivanov@mail.ru)
L.I. Korovina (Russian State University of Trade and Economics, Smol'naya 36, Moscow, 125993 Russia)
S.V. Nesterov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, kumak@ipmnet.ru) |
Abstract |
Natural transverse vibrations of an extended segment of a pipeline containing a uniformly moving fluid are considered. The mechanical model under study takes into account the inertial forces of the pipe and environment and the moment of Coriolis and centrifugal forces arising because of the medium motion. It is proved that all natural frequencies of the pipeline rigidly clamped at both ends are real (and hence no flutter can arise in this model). For the first three modes, the dependence of the eigenvalues on the fluid flow velocity (varying from zero to the buckling velocity) are constructed, and their properties depending on the inertia parameter are studied. Families of vibration mode shapes of the pipeline are constructed and investigated. |
Keywords |
pipeline, natural vibrations, spectrum, nonself-adjoint boundary value problem, inertial forces, boundary conditions, rigid fixation, buckling |
References |
1. | H. Ashley and G. Haviland,
"Bending Vibrations of a Pipeline Containing Flowing Fluid,"
J. Appl. Mech.
17 (3), 229-232 (1950). |
2. | G. W. Housner,
"Bending Vibrations of a Pipe Line Containing Flowing Fluid,"
J. Appl. Mech.
19 (2), 205-208 (1952). |
3. | H. L. Dodds, Jr., and H. L. Runyan,
Effect of High-Velocity Fluid Flow on the Bending Vibrations
and Static Divergence of a Simply Supported Pipe,
in NASA Techn. Note, NASA TN D-2870
(NASA, Washingrton, D.C., 1965). |
4. | R. Barakart,
"Transverse Vibrations of a Moving Thin Rod,"
J. Acoust. Soc. Amer.
43 (3), 533-539 (1968). |
5. | C. D. Mote, Jr.,
"A Study of a Band Saw Vibrations,"
J. Franklin Inst.
279 (6), 430-444 (1965). |
6. | M. P. Paidoussis and N. T. Issid,
"Dynamic Stability of Pipes Conveying Fluid,"
J. Sound Vibr.
33 (3), 267-294 (1974). |
7. | P. J. Holmes,
"Pipes Supported at Both Ends Cannot Flutter,"
J. Appl. Mech.
45 (3), 619-622 (1978). |
8. | M. P. Païdoussis,
"The Canonical Problem of the Fluid-Conveying Pipe and Radiation of the Knowledge Gained
to Other Dynamics Problems across Applied Mechanics,"
J. Sound Vibr.
310, 462-492 (2008). |
9. | S. V. Nesterov and L. D. Akulenko,
"Spectrum of Transverse Vibrations of a Moving Rod,"
Dokl. Ross. Akad. Nauk
420 (1), 50-54 (2008)
[Dokl. Phys. (Engl. Transl.)
53 (5), 265-269 (2008)]. |
10. | L. D. Akulenko and S. V. Nesterov,
"Flexural Vibrations of a Moving Rod,"
Prikl. Mat. Mekh.
72 (5), 759-774 (2008)
[J. Appl. Math. Mech. (Engl. Transl.)
72 (5), 550-560 (2008)]. |
11. | S. V. Nesterov, L. D. Akulenko, and L. I. Korovina,
"Transverse Oscillations of a Pipeline with Uniformly Moving Fluid,"
Dokl. Ross. Akad. Nauk
427 (6), 781-784 (2009)
[Dokl. Phys. (Engl. Transl.)
54 (8), 402-405 (2009)]. |
12. | L. D. Akulenko, L. I. Korovina, and S. V. Nesterov,
"Natural Vibrations of a Pipeline Segment,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 1, 172-187 (2011)
[Mech. Solids (Engl. Transl.)
46 (1), 139-150 (2011)]. |
13. | L. D. Akulenko and S. V. Nesterov,
High-Precision Methods in Eigenvalue Problems and Their Applications
(Chapman & Hall/CRC Press, Boca Raton, 2005) |
14. | P. Pfeiffer,
Handbuch der Physik, Band VI: Mechanik der Elastischen Körper
(Springer, Berlin, 1928; KomKniga, Moscow, 2006). |
15. | N. Jakšić,
"Numerical Algorithm for Natural Frequencies Computation of an Axially Moving Beam Model,"
Meccanica
44 (6), 687-695 (2009). |
16. | M. I. Ivanov,
"Free Tides in Two-Dimensional Uniform-Depth Basins,"
Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza,
No. 5, 119-130 (2004)
[Fluid Dyn. (Engl. Transl.)
39 (5), 779-789 (2004)]. |
17. | V. Ph. Zhuravlev and D. M. Klimov,
Applied Methods in the Theory of Vibrations
(Nauka, Moscow, 1988)
[in Russian]. |
|
Received |
12 July 2012 |
Link to Fulltext |
|
<< Previous article | Volume 48, Issue 4 / 2013 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|