Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-4pp.380-387

Archive of Issues

Total articles in the database: 12895
In Russian (Изв. РАН. МТТ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
P.O. Bulanchuk and A.G. Petrov, "Suspension Point Vibration Parameters for a Given Equilibrium of a Double Mathematical Pendulum," Mech. Solids. 48 (4), 380-387 (2013)
Year 2013 Volume 48 Number 4 Pages 380-387
DOI 10.3103/S0025654413040043
Title Suspension Point Vibration Parameters for a Given Equilibrium of a Double Mathematical Pendulum
Author(s) P.O. Bulanchuk (Institute of Solid State Physics, Russian Academy of Sciences, Akad. Osip'yana 2, Chernogolovka, Moscow oblast, 142432 Russia, bullpav@yandex.ru)
A.G. Petrov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, petrovipmech@gmail.com)
Abstract The motion of a double mathematical pendulum under the action of the gravity force and a vibration force whose frequency substantially exceeds the system natural frequencies is considered. An oblique vibration stabilizing the pendulum in an arbitrarily given position is sought. The domain of existence of the pendulum equilibrium points and the vibration parameters corresponding to a given equilibrium of the pendulum are obtained analytically. In the domain of existence of equilibrium points, the subdomain of their stability is distinguished.
Keywords double mathematical pendulum, high-frequency vibration of suspension point, stability
References
1.  P. O. Bulanchuk and A. G. Petrov, "Vibrational Energy and Control of Pendulum Systems," Prikl. Mat. Mekh. 76 (4), 550-562 (2012) [J. Appl. Math. Mech. (Engl. Transl.) 76 (4), 396-404 (2012)].
2.  A. Stephenson, "On Induced Stability," Phil. Mag. Ser. 7 17, 765-766 (1909).
3.  O. V. Kholostova, "On Stability of Relative Equilibria of a Double Pendulum with Vibrating Suspension Point," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 18-30 (2011) [Mech. Solids (Engl. Transl.) 46 (4), 508-518 (2011)].
4.  E. A. Vishenkova and O. V. Kholostova, "To Dynamics of a Double Pendulum with a Horizontally Vibrating Point of Suspension," Vestnik Udmurt. Univ. Mat. Mekh. Komp. Nauki., No. 2, 114-129 (2012).
5.  T. G. Strizhak, Averaging Methods in Problems of Mechanics (Vishcha Shkola, Kiev-Donetsk, 1982) [in Russian].
6.  P. O. Bulanchuk and A. G. Petrov, "Control of the Equilibrium Point of Simple and Double Mathematical Pendulums with Oblique Vibration," Dokl. Ross. Akad. Nauk 442 (4), 474-378 (2012) [Dokl. Phys. (Engl. Transl.) 57 (2), 73-77 (2012)].
7.  A. G. Petrov, "Vibratory Energy of a Conservative Mechanical System," Dokl. Ross. Akad. Nauk 431 (6), 762-765 (2010) [Dokl. Phys. (Engl. Transl.) 55 (4), 203-206 (2010)].
8.  N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in Theory of Nonlinear Oscillations (Nauka, Moscow, 1974) [in Russian].
9.  V. Ph. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Vibrations (Nauka, Moscow, 1988) [in Russian].
Received 01 March 2013
Link to Fulltext
<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100