Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-4pp.370-379

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
A.P. Markeev, "On the Stability of Nonlinear Vibrations of Coupled Pendulums," Mech. Solids. 48 (4), 370-379 (2013)
Year 2013 Volume 48 Number 4 Pages 370-379
DOI 10.3103/S0025654413040031
Title On the Stability of Nonlinear Vibrations of Coupled Pendulums
Author(s) A.P. Markeev (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, markeev@ipmnet.ru)
Abstract The motion of two identical pendulums connected by a linear elastic spring is studied. The pendulums move in a fixed vertical plane in a homogeneous gravity field. The nonlinear problem of orbital stability of such a periodic motion of the pendulums is considered under the assumption that they vibrate in the same direction with the same amplitude. (This is one of the two possible types of nonlinear normal vibrations.) An analytic investigation is performed in the cases of small vibration amplitude or small rigidity of the spring. In a special case where the spring rigidity and the vibration amplitude are arbitrary, the study is carried out numerically. Arbitrary linear and nonlinear vibrations in the case of small rigidity (the case of sympathetic pendulums) were studied earlier [1, 2].
Keywords pendulum, nonlinear vibrations, resonance, stability
References
1.  A. Sommerfeld, Mechanics (Izd-vo Inostr. Lit., Moscow, 1947) [in Russian].
2.  A. P. Markeev, "Nonlinear Vibrations of Sympathetic Pendulums," Nelin. Din. 6 (3), 605-621 (2010).
3.  A. M. Zhuravskii, Reference Book in Elliptic Functions (AN SSSR, Moscow-Leningrad, 1941) [in Russian].
4.  P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integral for Engineers and Physicists (Springer, Berlin-Gottingen-Heidelberg, 1954).
5.  A. P. Markeev, Theoretical Mechanics (NITs "Regular and Chaotic Mechanics", Moscow-Izhevsk, 2007) [in Russian].
6.  A. P. Markeev, "An Algorithm for Normalizing Hamiltonian Systems in the Problem of the Orbital Stability of Periodic Motions," Prikl. Mat. Mekh. 66 (6), 929-938 (2002) [J. Appl. Math. Mech. (Engl. Transl.) 66 (6), 889-896 (2002)].
7.  V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Editorial URSS, Moscow, 2002) [in Russian].
8.  A. P. Markeev, Libration Points in Celestial Mechanics and Space Dynamics (Nauka, Moscow, 1978) [in Russian].
9.  E. T. Whittaker, Analytical Dynamics (Gostekhizdat, Moscow-Leningrad, 1937) [in Russian].
10.  I. G. Malkin, Theory of Stability of Motion (Nauka, Moscow, 1966) [in Russian].
11.  V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and Their Applications (Nauka, Moscow, 1972) [in Russian].
12.  A. P. Markeev, "Stability of Equilibrium States of Hamiltonian Systems: a Method of Investigation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 3-12 (2004) [Mech. Solids (Engl. Transl.) 39 (6), 1-8 (2004)].
13.  A. P. Markeev, Linear Hamiltonian Systems and Several Problems of Satellite Motion Stability w.r.t. Center of Mass (IKI, NITs "Regular and Chaotic Mechanics", Moscow-Izhevsk, 2009) [in Russian].
14.  V. Ph. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Vibrations (Nauka, Moscow, 1988) [in Russian].
Received 15 February 2013
Link to Fulltext
<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100