Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-2pp.210-215

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 2 / 2013 | Next article >>
A.O. Vatul'yan and A.A. Lyapin, "On Inverse Coefficient Problems of Poroelasticity," Mech. Solids. 48 (2), 210-215 (2013)
Year 2013 Volume 48 Number 2 Pages 210-215
DOI 10.3103/S0025654413020131
Title On Inverse Coefficient Problems of Poroelasticity
Author(s) A.O. Vatul'yan (South Federal University, Mil'chakova 8a, Rostov-on-Don, 344090 Russia, vatulyan@math.rsu.ru)
A.A. Lyapin (South Federal University, Mil'chakova 8a, Rostov-on-Don, 344090 Russia, alexlpn@hotmail.com)
Abstract General approaches to the inverse coefficient problems of poroelasticity on the basis of a modified Biot model are considered. A generalized reciprocity relation is constructed, and an iteration process for determining the unknown coefficients is stated. By way of example, the problem of steady-state longitudinal vibrations of an inhomogeneous poroelastic layered system is considered, and integral equations for the direct and inverse problems are derived. The results of computational experiments where the elastic modulus and the Biot modulus were reconstructed for various laws of variation are given.
Keywords poroelasticity, vibration, reconstruction of inhomogeneous characteristics
References
1.  M. A. Biot, "Theory of Propagation of Acoustic Waves in a Fluid-Saturated Porous Solid. Part II. Higher Frequency Range," J. Acoustic. Soc. Am. 28 (2), 179-191 (1956).
2.  S. C. Cowin and J. W. Nonziano, "Linear Elastic Materials with Voids," J. Elasticity 13 (2), 125-147 (1983).
3.  D. S. Chandrasekharaiah and S. C. Cowin, "A Complete Solution for a Unified System of Field Equations of Thermoelasticity and Poroelasticity," Acta Mech. 99 (1-4), 225-233 (1993).
4.  J.-F. Allard, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials (Chapman & Hall, London, 1993).
5.  G. Cederbaum, L. P. Li, and K. Schulgasser, Poroelastic Structures (Elsevier, Amsterdam, 2000).
6.  S. C. Cowin, "Bone Poroelasticity," J. Biomech. 32 (3), 217-238 (1999).
7.  A. V. Amenitskii, A. A. Belov, L. A. Igumnov, and I. S. Karelin, "Boundary Integral Equations for Solving Dynamic Problems of Three-Dimensional Theory of Poroelasticity," in Problems of Strength and Plasticity, No. 71 (NNGU, Nizhnii Novgorod), pp. 164-171 [in Russian].
8.  L. B. Maslov, Mathematical Modeling of Vibrations of Poroelastic Systems (PresSto, Ivanovo, 2010) [in Russian].
9.  A. O. Vatul'yan, Inverse Problems in Mechanics of Deformable Solids (Fizmatlit, Moscow, 2007) [in Russian].
10.  A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1986) [in Russian].
11.  A. O. Vatul'yan, O. V. Yavruyan, and I. V. Bogachev, "Identifying the Elastic Properties of an Inhomogeneously Thick Layer," Akust. Zh. 57 (6), 723-730 (2011) [Acoust. Phys. (Engl. Transl.) 57 (6), 741-748 (2011)].
12.  A. O. Vatul'yan, "The Theory of Inverse Problems in the Linear Mechanics of a Deformable Solid," Prikl. Mat. Mekh. 74 (6), 909-916 (2010) [J. Appl. Math. Mech. (Engl. Transl.) 74 (6), 648-653 (2010)].
Received 25 July 2012
Link to Fulltext
<< Previous article | Volume 48, Issue 2 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100