Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-2pp.186-193

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 48, Issue 2 / 2013 | Next article >>
K.V. Avramov and I.D. Breslavskii, "Vibrations of Shallow Shells Rectangular in the Horizontal Projection with Two Freely Supported Opposite Edges," Mech. Solids. 48 (2), 186-193 (2013)
Year 2013 Volume 48 Number 2 Pages 186-193
DOI 10.3103/S0025654413020106
Title Vibrations of Shallow Shells Rectangular in the Horizontal Projection with Two Freely Supported Opposite Edges
Author(s) K.V. Avramov (Podgorny Institute for Problems in Mechanical Engineering, National Academy of Sciences of Ukraine, Dm. Pozharskogo 2/10, Kharkiv, 61046 Ukraine, kvavr@kharkov.ua)
I.D. Breslavskii (National Technical University "Kharkiv Polytechnic Institute," Frunze 21, Kharkiv, 61002 Ukraine, id.breslavsky@gmail.com)
Abstract The exact mode shapes of linear vibrations of a shallow shell rectangular in the horizontal projection with two freely supported opposite edges are obtained. These shapes are used to construct a discrete model of vibrations of a shallow shell in geometrically nonlinear deformation. The harmonic balance method is used to study the free and forced nonlinear vibrations under internal resonance. The Lyapunov stability of the obtained periodic vibrations is analyzed.
Keywords shallow shell, nonlinear vibrations, internal resonance, stability of motion
References
1.  E. I. Grigolyuk, "To Calculations of Stability of Shallow Arches," Inzh. Sb. 9, 177-200 (1951).
2.  A. W. Leissa and A. S. Kadi, "Curvature Effects on Shallow Shell Vibrations," J. Sound Vibr., 16 (2), 173-187 (1971).
3.  A. S. Vol'mir, A. A. Logvinskaya, and V. V. Rogalevich, "Nonlinear Free Vibrations of Rectangular Plates and Cylindrical Panels," in Proc. 8th All-Union Conf. on Theory of Shells and Plates (Nauka, Moscow, 1973), pp. 426-431 [in Russian].
4.  M. Amabili, "Nonlinear Vibrations of Doubly Curves Shallow Shells," Int. J. Nonlin. Mech. 40 (5), 683-710 (2005).
5.  A. W. Leissa, "The Free Vibration of Rectangular Plates," J. Sound Vibr. 31 (3), 257-293 (1973).
6.  L. Zhang and Y. Xiang, "Vibration of Open Circular Cylindrical Shells with Intermediate Ring Supports," Int. J. Solids Struct. 43 (13), 3705-3722 (2006).
7.  V. V. Bolotin (Editor), Vibrations in Technology. Handbook in 6 Volumes, Vol. 1: Vibrations of Linear Systems (Mashinostroenie, Moscow, 1978) [in Russian].
8.  A. S. Vol'mir, Nonlinear Dynamics of Plates and Shells (Nauka, Moscow, 1972) [in Russian].
9.  V. S. Gantkevich, Natural Vibrations of Plates and Shells (Naukova Dumka, Kiev, 1964) [in Russian].
10.  M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates (Cambridge Univ. Press, Cambridge, 2008) [in Russian].
11.  K. Avramov, Yu. Mikhlin, and E. Kurilov, "Asymptotical Analysis of Nonlinear Dynamics of Simply Supported Cylindrical Shells," Nonlin. Dyn. 47 (4), 331-352 (2007).
12.  I. Breslavskii, K. V. Avramov, Yu. Mikhlin, and R. Kochurov, "Nonlinear Modes of Snap-Through Motions of a Shallow Arch," J. Sound Vibr. 311 (1-2), 297-313 (2008).
13.  V. S. Anishchenko, Complex Vibrations in Simple Systems (Nauka, Moscow, 1990) [in Russian].
14.  V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and Their Applications (Nauka, Moscow, 1972) [in Russian].
Received 26 April 2010
Link to Fulltext
<< Previous article | Volume 48, Issue 2 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100