Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-1pp.92-118

Archive of Issues

Total articles in the database: 12804
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4760

<< Previous article | Volume 48, Issue 1 / 2013 | Next article >>
E.N. Vilchevskaya, R.A. Filippov, and A.B. Freidin, "On Transient Layers as New Phase Domains in Composite Materials," Mech. Solids. 48 (1), 92-118 (2013)
Year 2013 Volume 48 Number 1 Pages 92-118
DOI 10.3103/S002565441301010X
Title On Transient Layers as New Phase Domains in Composite Materials
Author(s) E.N. Vilchevskaya (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia, vilchevska@gmail.com)
R.A. Filippov (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia, rmnfilippov@gmail.com)
A.B. Freidin (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia, Alexander.Freidin@gmail.com)
Abstract A model describing the development of transient layers as new phase domains in composite materials is constructed under the assumption that the transient layers around (nano)particles are layers of the matrix material changed by the phase transformation and increase the effective volume of inclusions which become compound and consist of the nucleus (original particle) and the shell (transient layer of the new phase). As a result, the inclusion volume fraction increases, which, in turn, increases the particle influence efficiency. An example of spherical particles is used to consider the new phase development around an isolated particle and then, in the effective field approximation, around interacting particles in the composite material. The dependence of the compound inclusion radius on the external (averaged) strain is obtained for isotropic phases. Stability of the interphase boundaries depending on the parameters of the original inclusion material and the matrix phase materials is studied. The energy variations and the stress redistribution owing to the development of the new phase domains are considered in detail. It is shown that, in the case of an isolated inclusion, the development of a new phase may lead to a local energy decrease near the inclusions and, as a consequence, to a decrease in the stress concentration. At the same time, the formation of transient layers due to the phase transformation can result in an increase in the bulk modulus of elasticity as the effective shear modulus decreases.
Keywords composite materials, transient layers, phase transformations, effective moduli of elasticity
References
1.  R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, "Strengthening in Carbon Nanotube/Aluminum (CNT/Al) Composites," Scripta Mater. 53 (10), 1159-1163 (2005).
2.  X.-L. Xie, Y.-W. Mai, and X.-P. Zhoui, "Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix; A Review," Mat. Sci. Engng 49 (4), 89-112 (2005).
3.  E. T. Thostenson, Z. Ren, T.-W. Choui, "Advance in the Science and Technology of Carbon Nanotubes and Their Composites: A Review," Comp. Sci. Technol. 61 (13), 1899-1912 (2001).
4.  Y. B. Tang, H. T. Cong, R. Zhong, and H. M. Cheng, "Thermal Expansion of a Composite of Single-Walled Carbon Nanotubes and Nanocrystalline Aluminum," Carbon 42 (15), 3251-3272 (2004).
5.  D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, "Load Transfer and Deformation Mechanism in Carbon Nanotube-Polystyrene Composites," Appl. Phys. Lett. 76 (20), 2868-2870 (2000).
6.  V. Skakalova, U. Dettlaff-Weglikowska, and S. Roth, "Electrical and Mechanical Properties of Nanocomposites of Single Wall Carbon Nanotubes with PMMA," Synthetic Metals 152 (1-3), 349-352 (2005).
7.  M. Cadek, J. N. Coleman, V. Barron, et al., "Morphological and Mechanical Properties of Carbon-Nanotube-Reinforced Semicrystallin and Amorphous Polymer Composites," Appl. Phys. Lett. 81 (27), 5123-5125 (2002).
8.  E. Flahaut, A. Peigney, Ch. Laurent, et al., "Carbon Nanotube-Metal-Oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties," Acta Mater. 48 (14), 3803-3812 (2000).
9.  H. Wan, F. Delale, and L. Shen, "Effect of CNT Length and CNT-Matrix Interphase in Carbon Nanotube (CNT) Reinforces Composites," Mech. Res. Communicat. 32 (5), 481-489 (2005).
10.  G. M. Odegard, T. S. Gates, K. E. Wise, et al., "Constitutive Modeling of Nanotube-Reinforces Polymer Composite Systems," Comp. Sci. Technol. 63 (11), 1671-1687 (2003).
11.  H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, "Eshelby Formalism for Nano-Inhomogeneities," Proc. R. Soc. 461 (2062), 3335-3353 (2005).
12.  R. J. Arsenault and N. Shi, "Dislocation Generation due to Differences between the Coefficients of Thermal Expansion," Mater. Sci. Engng 81, 175-187 (1986).
13.  F. Bondioli, V. Cannillo, E. Fabbri, and M. Messori, "Epoxy-Silica Nanocomposites: Preparation, Experimental Characterization, and Modeling," J. Appl. Polym. Sci. 97 (6), 2382-2386 (2005).
14.  R. V. Goldstein and K. B. Ustinov, Effect of Inclusions on the Effective Properties of Composites with the Influence of the Intermediate Phase Taken into Account Preprint No. 792 (Inst. Problem Mekhaniki RAN, Moscow, 2006) [in Russian],.
15.  S. Boutaleb, F. Zairi, A. Mesbah, et al., "Micromechanics-Based Modeling of Stiffness and Yield Stress for Silica/Polymer Nanocomposites," Int. J. Solids Struct. 46 (7-8), 1716-1726 (2009).
16.  I. Sevostianov and M. Kachanov, "Effect of Interphase Layers on the Overall Elastic and Conductive Properties of Matrix Composites. Applications to Nanosize Inclusion," Int. J. Solids Struct. 44 (3-4), 1304-1315 (2007).
17.  A. Akbari, J. P. Riviere, C. Templier, et al., "Hardness and Residual Stresses in TiN-Ni Nanocomposite Coating Deposited by Reactive Dual Ion Beam Sputtering," Rev. Adv. Mater. Sci. 15, 111-117 (2007).
18.  S. G. Roberts, "Thermal Shock of Ground and Polished Alumina and Al2O3/SiC Nanocomposites," J. Europ. Ceramic Soc. 22 (16), 2945-2956 (2002).
19.  S. Lurie, D. Volkov-Bogorodsky, V. Zubov, and N. Tuchkova, "Advanced Theoretical and Numerical Multiscale Modeling of Cohesion/Adhesion Interactions in Continuum Mechanics and Its Applications for Filled Nanocomposites," Comput. Mater. Sci. 45 (3), 709-714 (2009).
20.  S. Lurie and N. Tuchkova, "A Continual Adhesion Model of Solid Nanostructured Media," Kompos. Nanostruct. 2 (2), 25-43 (2009).
21.  S. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, "Nanomechanical Modeling of the Nanostructures and Dispersed Composites," Int. J. Comp. Mater. 28 (3-4), 529-539 (2003).
22.  S. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, "Interphase Layer Theory and Application in the Mechanics of Composite Materials," J. Mater. Sci. 41 (20), 6693-6707 (2006).
23.  D. Volkov-Bogorodsky, Yu. G. Evtushenko, and V. Zubov, "Calculation of Deformations in Nanocomposites Using the Block Multipole Method with the Analytical-Numerical Account of the Scale Effects," Zh. Vych. Mat. Mat. Fiz. 46 (7), 1302-1311 (2006) [Comput. Math. Math. Phys. (Engl. Transl.) 46 (7), 1234-1253 (2006)].
24.  S. K. Kanaun and V. M. Levin, Efficient Field Method in Mechanics of Composite Materials (Izd-VO Petrozav. Univ., Petrozavodsk, 1993) [in Russian].
25.  S. K. Kanaun and V. M. Levin, Self-Consistent Methods for Composites, Vol. 1: Static Problems (Springer, 2007).
26.  N. F. Morozov, I. R. Nazyrov, and A. B. Freidin, "One-Dimensional Problem of the Phase Transformation of an Elastic Sphere," Dokl. Ross. Akad. Nauk 346 (2), 188-191 (1996) [Dokl. Math. (Engl. Transl.) 41 (1), 40-43 (1996)].
27.  I. R. Nazyrov and A. B. Freidin, "Phase Transformations in Deformation of Solids in a Model Problem of an Elastic Ball," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 52-71 (1998) [Mech. Solids (Engl. Transl.) 33 (5), 39-56 (1998)].
28.  V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, "The Stability of the Equilibrium of Two-Phase Elastic Solids," Prikl. Mat. Mekh. 71 (1), 66-92 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (1), 61-84 (2007)].
29.  E. N. Vilchevskaya and A. B. Freidin, "On Phase Transitions in a Domain of Material Inhomogeneity. I. Phase Transitions of an Inclusions in a Homogeneous External Field," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 208-228 (2007) [Mech. Solids (Engl. Transl.) 42 (5), 823-840 (2007)].
30.  L. B. Kublanov and A. B. Freidin, "Solid Phase Seeds in a Deformable Material," Prikl. Mat. Mekh. 52 (3), 493-501 (1988) [J. Appl. Math. Mech. (Engl. Transl.) 52 (3), 382-389 (1988)].
31.  N. F. Morozov and A. B. Freidin, "Zones of Phase Transitions and Phase Transformations in Elastic Bodies under Various Stress States," Trudy Mat. Inst. Steklov 223, 220-232 (1998) [Proc. Steklov Inst. Math. (Engl. Transl.) 223, 219-232 (1998)].
32.  A. B. Freidin, "Small-Strain Approximation in the Theory of Phase Transitions of Elastic Bodies under Deformation," in Strength and Fracture of Materials and Structures. Intervuz. Collection of Papers, Vol. 18: Studies in Elasticity and Plasticity, Ed. by N. F. Morozov (Izd-vo St. Petersburg Univ., St. Petersburg, 1999), pp. 266-290 [in Russian].
33.  A. B. Freidin, "On New Phase Inclusions in Elastic Solids," ZAMM 87 (2), 102-116 (2007).
34.  M. A. Grinfeld, "On Conditions of Thermodynamic Equilibrium of Phases of a Nonlinearly Elastic Material," Dokl. Akad. Nauk SSSR 251 (4), 824-827 (1980) [Soviet Math. Dokl. (Engl. Transl.)].
35.  M. A. Grinfeld, Methods of Continuum Mechanics in Theory of Phase Transformations (Nauka, Moscow, 1990) [in Russian].
36.  R. D. James, "Finite Deformations by Mechanical Twinning," Arch. Rat. Mech. Anal. 77 (2), 143-177 (1981).
37.  M. E. Gurtin, "Two-Phase Deformations of Elastic Solids," Arch. Rat. Mech. Anal. 84 (1), 1-29 (1983)
38.  I. A. Kunin and E. G. Sosnina, "Stress Concentration on an Ellipsoidal Inhomogeneity in an Anisotropic Elastic Medium," Prikl. Mat. Mekh. 37 (2), 306-315 (1973) [J. Appl. Math. Mech. (Engl. Trabsl.) 37 (2), 287-296 (1973)].
39.  I. A. Kunin, Elastic Media with Microstructure. II. Three-Dimensional Models, in Springer Series in Solid State Sciences, Vol. 44 (Springer-Verlag, Berlin, New-York, 1983).
40.  A. B. Freidin and A. M. Chiskis, "Phase Transition Zones in Nonlinearly Elastic Isotropic Materials," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 91-109 (1994) (Part 1); No. 5, 49-61 (1994) (Part 2) [Mech. Solids (Engl. Transl.)].
41.  A. B. Freidin, E. N. Vilchevskaya, and L. L. Sharipova, "Two-Phase Deformations within the Framework of Phase Transition Zones," Theor. Appl. Mech. 28-29, 149-172 (2002).
42.  A. B. Freidin and L. L. Sharipova, "On a Model of Heterogenous Deformation of Elastic Bodies by the Mechanism of Multiple Appearance of New Phase Layers," Meccanica 41 (3), 321-339 (2006).
43.  A. B. Freidin, Y. B. Fu, L. L. Sharipova, and E. N. Vilchevskaya, "Spherically Symmetric Two-Phase Deformations and Phase Transition Zones," Int. J. Solids Struct. 43 (14-15), 4484-4508 (2006).
44.  A. B. Freidin, L. L. Sharipova, and E. N. Vilchevskaya, "Phase Transition Zones in Relations with Constitutive Equations of Elastic Solids," in Proc. of the XXXII Summer School Actual Problems in Mechanics (APM-2004) (IPME RAS, St. Petersburg, 2004), pp. 140-150.
45.  Y. Grabovsky and L. Truskinovsky, "Roughening Instability of Broken Extremals," Arch. Rat. Mech. Anal. 200 (1), 183-202 (2011).
46.  V. A. Eremeev, A. B. Freidin, and L. L. Shapirova, "Nonuniqueness and Stability in Problems of Equilibrium of Elastic Two-Phase Bodies," Dokl. Ross. Akad. Nauk 391 (2), 189-193 (2003) [Dokl. Phys. (Engl. Transl.) 48 (7), 359-363 (2003)].
47.  J. D. Eshelby, "The Determination of the Elastic Field on an Ellipsoidal Inclusion and Related Problems," Proc. Roy. Soc. London. Ser. A 241 (1226), 376-396 (1957).
48.  Y. B. Fu and A. B. Freidin, "Characterization and Stability of Two-Phase Piecewise-Homogeneous Deformation," Proc. Roy. Soc. London. Ser. A 460 (2051), 3065-3094 (2004).
49.  M. A. Antimonov, A. V. Cherkaev, and A. B. Freidin, "In Transformation Surface Construction for Phase Transitions in Deformable Solids," in Proc. XXXVIII Summer School-Conference `Advanced Problems in Mechanics' (APM 2010), St. Petersburg (Repino), July 1-5, 2010 (St. Petersburg, 2010), pp. 23-29, http://apm-conf.spb.ru.
50.  I. A. Kunin, "Theory of Dislocations," in J. A. Schouten, Tensor Analysis for Physicists (Nauka, Moscow, 1965), pp. 373-443 [in Russian].
51.  I. A. Kunin, Theory of Elastic Media with Microstructure (Nauka, Moscow, 1975) [in Russian].
52.  E. N. Vilchevskaya and A. B. Freidin, "Multiple Appearances of Ellipsoidal Nuclei of a New Phase," Dokl. Ross. Akad. Nauk 411 (6), 770-774 (2006) [Dokl. Phys. (Engl. Transl.) 51 (12), 692-696 (2006)].
53.  A. B. Freidin and E. N. Vilchevskaya, "Multiple Development of New Phase Inclusions in Elastic Solids," Int. J. Engng Sci. 47 (2), 240-260 (2009).
54.  T. Mura, Micromechanics of Defects in Solids (Kluwer Academic, Dordrecht, 1987).
Received 19 September 2011
Link to Fulltext
<< Previous article | Volume 48, Issue 1 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100