Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-2pp.119-127

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 2 / 2013 | Next article >>
L.D. Akulenko and S.V. Nesterov, "Parametric Vibrations of a Mechanical System and Their Stability for an Arbitrary Modulation Coefficient," Mech. Solids. 48 (2), 119-127 (2013)
Year 2013 Volume 48 Number 2 Pages 119-127
DOI 10.3103/S0025654413020015
Title Parametric Vibrations of a Mechanical System and Their Stability for an Arbitrary Modulation Coefficient
Author(s) L.D. Akulenko (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, gavrikov@ipmnet.ru)
S.V. Nesterov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia)
Abstract The natural frequencies and modes of parametric vibrations of a mechanical system are studied, by way of example, for a pendulum of variable length with modulation coefficient varying from arbitrarily small to maximum admissible values. Analytic and numerical methods are used to construct and study the boundaries of the resonance domains for the first four vibration modes, and the main qualitative properties of higher modes are found. The complete degeneration of modes with even numbers, i.e., the coincidence of the frequencies of symmetric and nonsymmetric natural modes for admissible values of the modulation parameter, is proved. The global picture of boundaries of stability domains for the lower equilibrium is constructed, and a significant difference from the Ince-Strutt diagram is shown. Specific properties of the natural modes are established.
Keywords pendulum, variable length, parametric vibrations, modulation coefficient, resonance domain, natural frequency, natural mode
References
1.  L. I. Mandel'shtam, Lectures on the Theory of Oscillations (Nauka, Moscow, 1972) [in Russian].
2.  N. E. Kochin, "On Torsional Oscillations of Crankshafts," in Collection of Works, Vol. 2 (Izd-vo AN SSSR, Moscow-Leningrad, 1949), pp. 507-535 [in Russian].
3.  I. G. Malkin, Theory of Motion Stability (Nauka, Moscow, 1966) [in Russian].
4.  I. G. Malkin, Several Problems of Theory of Nonlinear Oscillations (Gostekhizdat, Moscow, 1956) [in Russian].
5.  V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and Their Applications (Nauka, Moscow, 1972) [in Russian].
6.  V. D. Goryachenko, Elements of the Theory of Oscillations (Vysshaya Shkola, Moscow, 2001) [in Russian].
7.  D. R. Merkin, Introduction to the Theory of Stability of Motion (Nauka, Moscow, 1976) [in Russian].
8.  V. Ph. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Vibrations (Nauka, Moscow, 1988) [in Russian].
9.  L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations (Springer, West Berlin, 1959; Mir, Moscow, 1964).
10.  J. K. Hale, Oscillations in Nonlinear Systems (McGraw-Hill, New York, 1963; Mir, Moscow, 1966).
11.  A. Blaquiere, Nonlinear System Analysis (Academic Press, New York, 1966; Mir, Moscow, 1972).
12.  G. Schmidt, Parametric Oscillations (VEB Deutscher Verlag der Wissenschaften, Berlin, 1975; Mir, Moscow, 1978).
13.  K. Magnus, Vibrations. Introduction to the Study of Oscillatory Systems (Mir, Moscow, 1982) [in Russian].
14.  M. J. O. Strutt, Lame, Mathieu and Related Functions in Physics and Technology (Springer, Berlin, 1932; Gostekhizdat Ukrainy, Kharkov-Kiev, 1935).
15.  N. W. McLachlan, Theory and Applications of Mathieu Functions (Oxford University Press, London, 1947; Izdat. Inostr. Lit., Moscow, 1953).
16.  R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1 (Wiley, New York, 1951; Mir, Moscow, 1951).
17.  L. D. Akulenko and S. B. Nesterov, "Accelerated Convergence Method for the Solution of a Periodic Boundary Value Problem," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 56-68 (1998) [Mech. Solids (Engl. Transl.) 33 (4), 48-58 (1998)].
18.  L. D. Akulenko and S. B. Nesterov, High-Precision Methods in Eigenvalue Problems and Their Applications (CRC Press, Boca Raton, 2005).
19.  L. D. Akulenko and S. B. Nesterov, "Parametric Oscillations and Stability of Systems with Large Modulation Coefficient," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 62-68 (2008) [Mech. Solids (Engl. Transl.) 43 (3), 366-371 (2008)].
Received 08 September 2011
Link to Fulltext
<< Previous article | Volume 48, Issue 2 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100