| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12788 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8028
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 47, Issue 6 / 2012 | Next article >> |
L.D. Akulenko, D.M. Klimov, Yu.G. Markov, and V.V. Perepelkin, "Oscillatory-Rotational Processes in the Earth Motion about the Center of Mass: Interpolation and Forecast," Mech. Solids. 47 (6), 601-621 (2012) |
Year |
2012 |
Volume |
47 |
Number |
6 |
Pages |
601-621 |
DOI |
10.3103/S0025654412060015 |
Title |
Oscillatory-Rotational Processes in the Earth Motion about the Center of Mass: Interpolation and Forecast |
Author(s) |
L.D. Akulenko (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, bolotnik@ipmnet.ru)
D.M. Klimov (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, klimov@ipmnet.ru)
Yu.G. Markov (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, markov@ipmnet.ru)
V.V. Perepelkin (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, vadimkin1@yandex.ru) |
Abstract |
The celestial-mechanics approach (the spatial version of the problem for the Earth-Moon system in the field of gravity of the Sun) is used to construct a mathematical model of the Earth's rotational-oscillatory motions. The fundamental aspects of the processes of tidal inhomogeneity in the Earth rotation and the Earth's pole oscillations are studied. It is shown that the presence of the perturbing component of gravitational-tidal forces, which is orthogonal to the Moon's orbit plane, also allows one to distinguish short-period perturbations in the Moon's motion. The obtained model of rotational-oscillatory motions of the nonrigid Earth takes into account both the basic perturbations of large amplitudes and the more complicated small-scale properties of the motion due to the Moon short-period perturbations with combination frequencies.
The astrometric data of the International Earth Rotation and Reference Systems Service (IERS) are used to perform numerical simulation (interpolation and forecast) of the Earth rotation parameters (ERP) on various time intervals. |
Keywords |
the Earth rotation inhomogeneities, center of mass, viscoelastic model, gravitational-tidal perturbations, oscillations of poles, day length, time scale, Universal Time |
References |
1. | IERS Annual Reports, URL: http://www.iers.org. |
2. | E. W. Woolard,
Theory of the Rotation of the Earth around Its Center of Mass
(Astron. Pap. Amer. Eph. Naut. Almanac XV (1), 1-165 (1953);
Fizmatgiz, Moscow, 1963). |
3. | W. H. Munk and G. J. F. MacDonald,
The Rotation of the Earth
(Cambridge Univ. Press, Cambridge, 1960; Mir, Moscow, 1964). |
4. | H. Moritz and I. I. Mueller,
Earth Rotation: Theory and Observations
(Ungar, New York, 1987; Naukova Dumka, Kiev, 1992). |
5. | J. Vondrak,
"Earth Rotation Parameters 1899.7-1992.0 after Reanalysis within
the Hipporcos Frame,"
Surv. Geophys.
20, 169-195 (1999). |
6. | C. Audoin and B. Guinot,
The Measurement of Time: Time, Frequency, and the Atomic Clock
(Masson, Paris, 1998; Cambridge Univ. Press, Cambridge, 2001; Tekhnosfera, Moscow, 2002). |
7. | N. S. Sidorenkov,
Physics of the Earth's Rotation Instabilities
(Nauka, Fizmatlit, Moscow, 2002). |
8. | L. D. Akulenko, S. A. Kumakshev, and Yu. G. Markov,
"Modeling of the Pole's Motion for the Deformable Earth,"
Dokl. Ross. Akad. Nauk
379 (2), 191-195 (2001)
[Dokl. Phys. (Engl. Transl.)
46, 508-512 (2001)]. |
9. | L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova,
"A Gravitational-Tidal Mechanism for the Earth's Polar Oscillations,"
Astron. Zh.
82 (10), 950-960 (2005)
[Astron. Rep. (Engl. Transl.)
49 (10), 847-857 (2005)]. |
10. | L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova,
"Analysis of Multifrequency Effects in Oscillations of the Earth's Pole,"
Astron. Zh.
84 (5), 471-478 (2007)
[Astron. Rep. (Engl. Transl.)
51 (5), 421-427 (2007)]. |
11. | V. V. Bondarenko and V. V. Perepelkin,
"Rotational-Oscillational Motions of the Nonrigid Earth about the Center of Mass,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 5, 25-35 (2009)
[Mech. Solids (Engl. Transl.)
44 (5), 677-685 (2009)]. |
12. | L. D. Akulenko, Yu. G. Markov, and V. V. Perepelkin,
"A Celestial Mechanics Model of the Earth's Rotation Irregularity,"
Kosmich. Issled.
47 (5), 452-459 (2009)
[Cosmic Res. (Engl. Transl.)
47 (5), 417-425 (2009)]. |
13. | L. D. Akulenko, Yu. G. Markov, and V. V. Perepelkin,
"Dynamical Analysis of Subtle Effects of the Earth's Tidal Rotation Irregularity,"
Dokl. Ross. Akad. Nauk
436 (1), 38-42 (2011)
[Dokl. Phys. (Engl. Transl.)
56 (1), 16-21 (2011)]. |
14. | L. D. Akulenko, Yu. G. Markov, and V. V. Perepelkin,
"Modeling of the Earth's Rotary-Oscillatory Motion within a Short Time Interval (Interpolation and Prognosis),"
Dokl. Ross. Akad. Nauk
438 (3), 326-331 (2011)
[Dokl. Phys. (Engl. Transl.)
56 (5), 294-299 (2011)]. |
15. | V. S. Gubanov,
Generalized Least Squares Method.
Theory and Applications in Astrometry
(Nauka, St. Petersburg, 1997)
[in Russian]. |
16. | W. Smart,
Celestial Mechanics
(Wiley, New York, 1961; Mir, Moscow, 1965). |
|
Received |
29 March 2012 |
Link to Fulltext |
|
<< Previous article | Volume 47, Issue 6 / 2012 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|