Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-5pp.517-524

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 47, Issue 5 / 2012 | Next article >>
P.E. Tovstik and T.P. Tovstik, "Static and Dynamic Analysis of Two-Dimensional Graphite Lattices," Mech. Solids. 47 (5), 517-524 (2012)
Year 2012 Volume 47 Number 5 Pages 517-524
DOI 10.3103/S0025654412050044
Title Static and Dynamic Analysis of Two-Dimensional Graphite Lattices
Author(s) P.E. Tovstik (St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia, peter.tovstik@mail.ru)
T.P. Tovstik (St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia)
Abstract Plane problems of statics and dynamics of graphite lattice are considered in the linear approximation. Comparative analysis of two models of interatomic interaction is carried out. One of these models is based on pairwise moment interaction, and the other is the Brenner model where the variation in the angles between the segments connecting the atom under study with three nearest neighbors is additionally taken into account. The lattice tensile and shear rigidity in two directions is studied by straightforward calculations. The propagation of harmonic tensile and shear waves it two directions is considered. In problems of both statics and wave propagation, the results are compared with similar results for the equivalent continuum. It turned out that in the problems of statics, the Brenner model (after averaging) leads to an isotropic momentless continuum, while the model with pair interaction lead to the moment Cosserat continuum. In problems of wave propagation, both of these models give the same qualitative results. The velocities of acoustic parallel extension-compression wave propagation in a lattice are close to the wave velocity in the continuum but do not coincide with it. The difference increases with decreasing wave length and depends on the wave propagation direction. In the case of shear wave propagation in a lattice, the velocity of acoustic shear wave propagation in the pair moment potential model significantly (in the leading terms) depends on the direction of its propagation. The optical short waves are discovered and some of their properties are described.
Keywords graphite lattice, pair interaction, Brenner model, constitutive relations, longitudinal and shear waves, acoustic and optical modes
References
1.  M. Born and H. Kun, Dynamical Theory of Crystal Lattices (Claderon Press, Oxford, 1954; Izd-vo Inostr. Liter., Moscow, 1958).
2.  A. M. Kosevich, Foundations of Mechanics of Crystal Lattice (Nauka, Moscow, 1972) [in Russian].
3.  N. F. Morozov and M. V. Paukshto, Discrete and Hybrid Models of Fracture Mechanics (Izd-vo SPbGU, St. Petersburg, 1995) [in Russian].
4.  A. M. Krivtsov, Deformation and Failure of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].
5.  A. P. Byzov and E. A. Ivanova, "Mathematical Simulation of Moment Interactions of Particles with Rotational Degrees of Freedom," Nauchno-Tekhn. Vedomosti SPbGPU, No. 2, 260-278 (2007).
6.  I. E. Berinskii, E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, "Application of Moment Interaction to the Construction of a Stable Model of Graphite Crystal Lattice," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 6-16 (2007) [Mech. Solids (Engl. Transl.) 42 (5), 663-671 (2007)].
7.  D. W. Brenner, "Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films," Phys. Rev. B 42 (15), 9458-9471 (1990).
8.  E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsova, "Inclusion of the Moment Interaction in the Calculation of the Flexural Rigidity of Nanostructures," Dokl. Ross. Akad. Nauk 391 (6), 764-768 (2003) [okl. Phys. (Engl. Transl.) 48 (8), 455-458 (2003)].
9.  E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, "Derivation of Macroscopic Relations of the Elasticity of Complex Crystal Lattices Taking into Account the Moment Interactions at the Microlevel," Prikl. Mat. Mekh. 71 (4), 595-615 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (4), 543-561 (2007)].
10.  P. E. Tovstik and T. P. Tovstik, "A Model of Two-Dimensional Graphite Layer," Vestnik S.-Peterburg. Univ. Ser. I, No. 3, 134-142 (2009).
11.  V. A. Kuz'kin and A. M. Krivtsov, "Description for Mechanical Properties of Graphene Using Particles with Rotational Degrees of Freedom," Dokl. Ross. Akad. Nauk 440 (4), 476-479 (2011) [Dokl. Phys. (Engl. Transl.) 56 (10), 527-530 (2011)].
12.  D. W. Brenner, O. A. Shenderova, J. A. Harrison, et al., "A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons," J. Phys. Condens. Matter. 14 (4), 783-802 (2002).
13.  B. D. Annin, S. N. Korobeinikov, and A. V. Babichev, "Computer Simulation of a Twisted Nanotube Buckling," Sib. Zh. Industr. Mat. 11 (1), 3-22 (2008) [J. Appl. Industr. Math. (Engl. Transl.) 3 (3), 318-333 (2009)].
14.  N. F. Morozov, Mathematical Problems of Crack Theory (Nauka, Moscow, 1984) [in Russian].
15.  N. F. Morozov, Lectures in Selected Problems of Continuum Mechanics (Izd-vo LGU, Leningrad, 1975) [in Russian].
16.  I. E. Berinskii, N. G. Dvas, A. M. Krivtsov, et al. Theoretical Mechanics. Elastic Properties of One-Atomic and Two-Atomic Crystals, Ed. by A. M. Krivtsov (Izd-vo Politekh. Univ., St. Petersburg, 2009) [in Russian].
Received 21 June 2012
Link to Fulltext
<< Previous article | Volume 47, Issue 5 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100