Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-5pp.560-565

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 47, Issue 5 / 2012 | Next article >>
S.A. Bochkarev and V.P. Matveenko, "Stability Analysis of Stationary and Rotating Circular Cylindrical Shells Conveying Flowing and Rotating Fluid," Mech. Solids. 47 (5), 560-565 (2012)
Year 2012 Volume 47 Number 5 Pages 560-565
DOI 10.3103/S0025654412050093
Title Stability Analysis of Stationary and Rotating Circular Cylindrical Shells Conveying Flowing and Rotating Fluid
Author(s) S.A. Bochkarev (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Koroleva 1, Perm, 614013 Russia, bochkarev@icmm.ru)
V.P. Matveenko (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Koroleva 1, Perm, 614013 Russia, mvp@icmm.ru)
Abstract The paper deals with numerical analysis of the stability of stationary and rotating cylindrical shells interacting with a fluid flowing and rotating inside them. It is shown that in the case of the fluid combined flow, the type of the loss of stability depends on the type of the boundary conditions. It is also shown that for different cases of boundary conditions and different geometric dimensions, the fluid rotation can result in an increase or a decrease in the critical velocity of the fluid axial flow.
Keywords classical theory of shells, cylindrical shell, potential fluid, combined fluid, FEM, stability
References
1.  Y.-C. Lai and C.-Y. Chow, "Stability of a Rotating Thin Elastic Tube Containing a Fluid Flow," ZAMM 53 (9), 511-517 (1973).
2.  Yu. S. Vorobiev and S. I. Detistov, "Influence of a Gas Flow on Vibrations of Rotating Cylindrical Shells," Prikl. Mekh. 21 (7), 39-43 (1985).
3.  T. L. C. Chen and C. W. Bert, "Wave Propagation in Isotropic- or Composite-Material Piping Conveying Swirling Liquid," Nucl. Engng Des. 42, 247-255 (1977).
4.  T. L. C. Chen and C. W. Bert, "Dynamic Stability of Isotropic or Composite Material Cylindrical Shells Containing Swirling Fluid Flow," Trans. ASME. J. Appl. Mech. 44, 112-116 (1977).
5.  A. V. Srinivasan, "Flutter Analysis of Rotating Cylindrical Shells Immersed in a Circular Helical Flow Field of Air," AIAA J. 9 (3), 394-400 (1971).
6.  T. S. David and A. V. Srinivasan, "Flutter of Coaxial Cylindrical Shells in an Incompressible Axisymmetric Flow," AIAA J. 12 (12), 1631-1635 (1974).
7.  M. A. Il'gamov, Vibrations of Elastic Shells Containing Fluids (Nauka, Moscow, 1969) [in Russian].
8.  S. A. Bochkarev and V. P. Matveenko, "Numerical Study of the Influence of Boundary Conditions on the Dynamic Behavior of a Cylindrical Shell Conveying a Fluid," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 189-199 (2008) [Mech. Solids (Engl. Transl.) 43 (3), 477-486 (2008)].
9.  N. A. Alfutov, Calculation of Multilayer Plates and Shells of Composite Materials (Mashinostroenie, Moscow, 1984) [in Russian].
10.  K. R. Sivadas and N. Ganesan, "Effect of Rotation on Vibration of Moderately Thick Circular Cylindrical Shells," J. Vibr. Acoust. 116 (1), 198-202 (1994).
11.  V. P. Matveenko, "On an Algorithm for Solving Problems of Natural Vibrations of Elastic Bodies by the Finite Element Method," in Boundary-Value Problems of Elasticity and Viscoelasticity (UNTs AN SSSR, Sverdlovsk, 1980), pp. 20-24 [in Russian].
Received 10 June 2012
Link to Fulltext
<< Previous article | Volume 47, Issue 5 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100