Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-5pp.544-559

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 47, Issue 5 / 2012 | Next article >>
B.D. Annin, V.V. Alekhin, A.V. Babichev, and S.N. Korobeynikov, "Molecular Mechanics Method Applied to Problems of Stability and Natural Vibrations of Single-Layer Carbon Nanotubes," Mech. Solids. 47 (5), 544-559 (2012)
Year 2012 Volume 47 Number 5 Pages 544-559
DOI 10.3103/S0025654412050081
Title Molecular Mechanics Method Applied to Problems of Stability and Natural Vibrations of Single-Layer Carbon Nanotubes
Author(s) B.D. Annin (Lavrentyev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, pr-t akad. Lavrentyeva 15, Novosibirsk, 630090 Russia, annin@hydro.nsc.ru)
V.V. Alekhin (Lavrentyev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, pr-t akad. Lavrentyeva 15, Novosibirsk, 630090 Russia, alekhin@hydro.nsc.ru)
A.V. Babichev (Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, pr-t akad. Koptyuga 3, Novosibirsk, 630090 Russia, babichev@uiggm.nsc.ru)
S.N. Korobeynikov (Lavrentyev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, pr-t akad. Lavrentyeva 15, Novosibirsk, 630090 Russia, S.N.Korobeynikov@mail.ru)
Abstract The molecular mechanics (MM) method is used to determine the frequencies and natural vibration shapes and to determine the buckling critical parameters and the postcritical deformation shapes of single-walled carbon nanotubes with twisted ends. The following two variants of the MM method are used: the standard MM method and the mixed method of molecular mechanics/molecular structure mechanics method (MM/MSM). Computer simulation shows that the MM/MSM method allows one to obtain acceptable values of frequencies and natural vibration shapes as well as of critical angles of twist, appropriate buckling modes, and postcritical deformation configurations of nanotubes compared with the same characteristics of nanotube free vibrations and buckling obtained by the standard MM method.
Keywords molecular mechanics method, single-walled carbon nanotube, natural vibrations, stability
References
1.  I. Suarez-Martinez, N. Grobert, and C. P. Ewels, "Nomenclature of sp2 Carbon Nanoforms," Carbon 50, 741-747 (2012).
2.  M. J. Buehler, Atomic Modeling of Materials Failure (Springer, New York, 2008).
3.  W. K. Liu, E. G. Karpov, and H. S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications (Wiley, Chichester, 2006).
4.  H. Rafii-Tabar, Computational Physics of Carbon Nanotubes (Cambreidge Univ. Press, Cambridge, 2008).
5.  B. I. Yakobson and L. S. Couchman, "Carbon Nanotubes: Supramolecular Mechanics," in Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel Dekker, New York, 2004), pp. 587-601.
6.  J. Z. Zhang, Z. L. Wang, J. Liu, et al., Self-Assembled Nanostructures (Kluwer Acad. Publ., New York, 2004).
7.  E. G. Rakov, Nanotubes and Fullerenes (Logos, Moscow, 2006) [in Russian].
8.  V. A. Eremeev, E. A. Ivanova, and N. F. Morozov, "Mechanical Problems in Nanotechnology," Izv. Sarat. Univ. Ser. Mat., Mekh., Inf. 8 (3), 25-31 (2008).
9.  A. M. Krivtsov, Deformation and Fracture of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].
10.  J. Wackerfuss, "Molecular Mechanics in the Context of the Finite Element Method," Int. J. Numer. Meth. Engng 77 (7), 969-997 (2009).
11.  T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, "Atomistic Simulations of Nanotube Failure," Phys. Rev. B 65, 235430 (2002).
12.  C.-L. Zhang and H.-S. Shen, "Buckling and Postbuckling Analysis of Single-Walled Carbon Nanotubes in Thermnal Environment via Molecular Dynamics Simulation," Carbon 44, 2608-2616 (2006).
13.  R. C. Batra and S. S. Gupta, "Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes," Trans. ASME. J. Appl. Mech. 75, 061010 (2008).
14.  R. Ansari, S. Sahmani, and H. Rouhi, "Rayleigh-Ritz Axial Buckling Analysis of Single-Walled Carbon Nanotubes with Different Boundary Conditions," Phys. Lett. A 375 (9), 1255-1263 (2011).
15.  A. R. Khoei, E. Ban, P. Banihashemi, and M. J. Adolhosseini Qomi, "Effects of Temperature and Torsion Speed on Torsional Properties of Single-Walled Carbon Nanotubes," Mat. Sci. Engng. C 31 (2), 452-457 (2011).
16.  H. Y. Song and X. W. Zha, "Molecular Dynamics Study of Effects of Nickel Coating on Torsional Behavior of Single-Walled Carbon Nanotubes," Physica B 406, 992-995 (2011).
17.  F. W. Sun and H. Li, "Torsional Strain Energy Evolution of Carbon Nanotubes and Their Stability with Encapsulated Helical Copper Nanowires," Carbon 49, 1408-1415 (2011).
18.  N. M. Pugno and J. A. Elliott, "Buckling of Peapods, Fullerenes and Nanotubes," Physica E 44, 944-948 (2012).
19.  N. Silvestre, B. Faria, and G. N. C. Lopes, "A Molecular Dynamics Study on the Thickness and Post-Critical Strength of Carbon Nanotubes," Compos. Struct. 94, 1352-1358 (2012).
20.  S. N. Korobeinikov, "Buckling Criteria of Atomic Lattices," in CDICF11 Full Papers: The 11th Int. Conf. on Fracture. Turino. Sect. 30 'Nano- or Micro-Scale', Ed. by A. Carpinteri (2005), ID 5597.
21.  S. N. Korobeinikov, "Nonlinear Equations of Deformation of Atomic Lattices," Arch. Mech. 57 (6), 457-475 (2005).
22.  G. M. Odegard, T. S. Gates, L. M. Nicholson, and E. Wise, "Equivalent-Continuum Modeling of Nano-Structured Materials," Compos. Sci. Technol. 62 (14), 1869-1880 (2002).
23.  T. S. Gates, G. M. Odegard, S. J. V. Frankland, and T. C. Clancy, "Computational materials: Multi-Scale Modeling and Simulation of Nanostructured Materials," Compos. Sci. Technol. 65 (15-16), 2416-2434 (2005).
24.  R. V. Goldstein and A. V. Chentsov, "Discrete-Continuous Model of a Nanotube," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 57-74 (2005) [Mech. Solids (Engl. Transl.) 40 (4), 45-59 (2005)].
25.  R. V. Goldstein, A. V. Chentsov, R. M. Kadushnikov, and N. A. Shturkin, "Methodology and Metrology for Mechanical Testing of Nano- and Microdimensional Objects, Materials, and Products of Nanotechnology," Ross. Nanotekhnol. 3 (1-2), 114-124 (2008) [Nanotechnol. Russ. (Engl. Transl.) 3 (1-2), 112-121 (2008)].
26.  M. Arroyo and T. Belytschko, "An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films," J. Mech. Phys. Solids 50, 1941-1977 (2002).
27.  M. Arroyo and T. Belytschko, "A Finite Deformation Membrane Based on Inner-Atomic Potentials for the Transverse Mechanics of Nanotubes," Mech. Mater. 35 (3-6), 193-215 (2003).
28.  P. Dluźewski and P. Traczykowski, "Numerical Simulation of Atomic Positions in Quantum Dot by Means of Molecular Statics," Arch. Mech. 55 (5-6), 393-406 (2003).
29.  S. S. Gupta and R. C. Batra, "Basic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets," J. Comput. Theor. Nanosci. 7, 1-14 (2010).
30.  S. N. Korobeinikov, Finite Element Method Used to Solve Nonlinear Problems of Deformation and Loss of Stability of Atomic Lattices, Preprint No. 1-97 (IGiL SO RAN, Novosibirsk, 1997) [in Russian].
31.  S. N. Korobeinikov, "The Numerical Solution of Nonlinear Problems on Deformation and Buckling of Atomic Lattices," Int. J. Fract. 128, 315-323 (2004).
32.  B. Liu, Y. Huang, H. Jiang, et al., "The Atomic-Scale Finite Element Method," Comput. Methods Appl. Mech. Engng 193, 1849-1864 (2004).
33.  A. Y. T. Leung, X. Guo, and X. Q. He, "Postbuckling of Carbon Nanotubes by Atomic-Scale Finite Element," J. Appl. Phys. 99, 124308 (2006).
34.  B. D. Annin, S. N. Korobeinikov, and A. B. Babichev, "Computer Simulation of Nanotube Buckling in Torsion," Sib. Zh. Industr. Mat. 11 (1), 3-22 (2008).
35.  B. D. Annin, V. V. Alekhin, A. B. Babichev, and S. N. Korobeinikov, "Computer Simulation of Nanotube Contact," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 56-76 (2010) [Mech. Solids (Engl. Transl.) 45 (3), 352-369 (2010)].
36.  R. Ansari and S. Rouhi, "Atomic Finite Element Model for Axial Buckling of Single-Walled Carbon Nanotubes," Physica E 43, 58-69 (2010).
37.  A. F. Avila, A. C. Eduardo, A. S. Neto, "Vibrational Analysis of Graphene Based Nanotstructures," Comput. Struct. 89, 878-892 (2011).
38.  M. M. S. Fakhrabadi, M. Samadzadeh, A. Rastgoo, et al., "Vibrational Analysis of Carbon Nanotubes Using Molecular Mechanics and Artificial Neural Network," Physica E 44, 565-578 (2011).
39.  M. M. S. Fakhrabadi, N. Khanib, R. Omidvarc, and A. Rastgoo, "Investigation of Elastic and Buckling Properties of Carbon Nanocones Using Molecular Mechanics Approach," Comput. Mater. Sci. 61, 248-256 (2012).
40.  R. D. Firouz-Abadi and A. R. Hosseinian, "Free Vibrations of Single-Walled Carbon Nanotubes in the Vicinity of a Fully Constrained Graphene Sheet," Comput. Mater. Sci. 53, 12-17 (2012).
41.  G. I. Giannopoulos, P. A. Kakavas, and N. K. Anifantis, "Evaluation of the Effective Mechanical Properties of Single-Walled Carbon Nanotubes Using a Spring Based Finite Element Approach," Comput. Mater. Sci. 41, 561-569 (2008).
42.  N. Hu, K. Nunoya, D. Pan, et al., "Prediction of Buckling Characteristics of Carbon Nanotubes," Int. J. Solids Struct. 44, 6535-6550 (2007).
43.  Z. Kang, M. Li, and Q. Tang, "Buckling Behavior of Carbon Nanotube-Based Intramolecular Junction under Compression: Molecular Dynamics Simulation and Finie Elements Analysis," Comput. Mater. Sci. 50, 253-259 (2010).
44.  J. H. Lee and B. S. Lee, "Modal Analysis of Carbon Nanotubes and Nanocones Using FEM," Comput. Mater. Sci. 51, 30-42 (2012).
45.  J. H. Lee, B. S. Lee, F. T. K. Au, J. Zhangc, and Y. Zeng, "Vibrational and Dynamic Analysis of C60 and C30 Fullerenes Using FEM," Comput. Mater. Sci. 56, 131-140 (2012).
46.  C. Y. Li and T. W. Chou, "A Structural Mechanics Approach for the Analysis of Carbon Nanotubes," Int. J. Solids Struct. 40 (10), 2487-2499 (2003).
47.  B. Liu, H. Jiang, Y. Huang, et al., "Atomic-Scale Finite Element Method in Multiscale Computation with Applications to Carbon Nanotubes," Phys. Rev. B 72, 035435 (2005).
48.  E. Mahmoudinezhad, R. Ansari, A. Basti, and M. Hemmatnezhad, "An Accurate Spring-Mass Model for Predicting Mechanical Properties of Single-Walled Carbon Nanotubes," Comput. Mater. Sci. 62, 6-11 (2012).
49.  L. Nasdala, A. Kempe, and R. Rolfes, "Are Finite Elements Appropriae for Use in Molecular Dynamcis Simulation?" Compos. Sci. Technol. 72, 989-1000 (2012).
50.  V. Parvaneh, M. Shariati, and H. Torabi, "Frequency Analysis of Perfect and Defective SWCNTs," Comput. Mater. Sci. 50, 2051-2056 (2011).
51.  R. Rafiee and M. Heidarhaei, "Investigation of Chirality and Diameter Effects on the Young's Modulus of Carbon Nanotubes Using Non-Linear Potentials," Compos. Struct. 94, 2460-2464 (2012).
52.  S. Rouhi and R. Ansari, "Atomic Finite Element Model for Axial Buckling and Vibrational Analysis of Single-Layered Graphene Sheets," Physica E 44, 764-772 (2012).
53.  E. I. Saavedra-Flores, S. Adhikari, M. I. Fristwell, and F. Scarpa, "Hyperelastic Axial Buckling of Single Wall Carbon Nanotubes," Physica E 44, 525-529 (2011).
54.  J. M. Wernik and S. A. Meguid, "Atomistic-Based Continuum Modeling of the Nonlinear Behavior of Carbon Nanotubes," Acta Mech. 212, 167-179 (2010).
55.  S. N. Korobeinikov and A. V. Babichev, "Numerical Simulation od Dynamic Deformation and buckling of Nanostructures," in CD ICF Interquadrennial Conf. Full Papers (Institute for Problems in Mechanics, Moscow, 2007).
56.  S. N. Korobeinikov and A. V. Babichev, "Nanotube Buckling under Sudden Application of a Constant Axial Load," in Mathematical Modeling of Systems and Processes, Collection of Scientific Papers No. 16 (Izd-vo PGTU, Perm, 2008), pp. 43-54 [in Russian].
57.  S. N. Korobeinikov, V. D. Annin, and A. V. Babichev, "Buckling Criteria for Nanostructures and Their Applications in Computer Simulation of Nanotube Twisting," in CD Proc. 18th Europ. Conf. on Fracture (Dresden TU, Dresden, 2010).
58.  V. A. Eremeyev, E. A. Ivanova, N. F. Morozov, and A. N. Solov'ev, "On the Determination of Eigenfrequencies for Nanometer-Size Objects," Dokl. Ross. Akad. Nauk 406 (6), 756-759 (2006) [Dokl. Phys. (Engl. Transl.) 51 (2), 93-97 (2006)].
59.  N. G. Chopra, L. Kh. Benedict, V. N. Crespi, et al., "Fully Collapsed Carbon Nanotubes," Nature 377, 135-138 (1995).
60.  C. M. Wang, Y. Y. Zhang, Y. Xiang, and J. N. Reddy, "Recent Studies on Buckling of Carbon Nanotubes," Appl. Mech. Rev. 63, 030804 (2010).
61.  R. Senga, K. Hirahara, and Y. Nakayama, "Nanotorsional Actuator Using Transition between Flattened and Tubular States in Carbon Nanotubes," Appl. Phys. Lett. 100, 083110 (2012).
62.  L. A. Girifalco, M. Hodak, and R. S. Lee, "Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential," Phys. Rev. B 62, 13104-13110 (2000).
63.  A. Curnier, Computational Methods in Solid Mechanics (Kluwer Academic Publ., Dordrecht, 1994).
64.  S. N. Korobeinikov, V. P. Agapov, M. I. Bondarenko, and A. N. Soldatkin, "The General Purpose Nonlinear Finite Element Structural Analysis Program PIONER," in Proc. Int. Conf. on Numerical Methods and Applications (Publ. House of the Bulgarian Acad. of Sci., Sofia, 1989), pp. 228-233.
65.  K.-J. Bathe, Finite Element Procedures (Prentice Hall, New Jersey, 1996).
66.  S. N. Korobeinikov, Nonlinear Deformation of Solids (Sib. Otdel. RAN, Novosibirsk, 2000) [in Russian].
67.  L. H. N. Lee, "On Dynamic Stability and Quasi-Bifurcation," Int. J. Nonlin. Mech. 16, 79-87 (1981).
68.  M. Kleiber, W. Kotula, and M. Saran, "Numerical Analysis of Dynamic Quasi-Bifurcation" Engng Comput. 4, 48-52 (1987).
69.  V. I. Shalashilin and E. B. Kuznetsov, Parametric Continuation Method and Optimal Parametrization (Izd-vo URSS, Moscow, 1999) [in Russian].
70.  PATRAN Users Guide (MSC Software Corporation, Santa Ana, 2011).
71.  A. V. Babichev, "Automating Model Construction and Visualization of Results of Numerical Simulation of Deformation of Nanostructures," Vych. Mekh. Sploshn. Sred 1 (4), 21-27 (2008).
72.  R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Electronic Structure of Chiral Graphene Tubules," Appl. Phys. Lett. 60, 2204-2206 (1992).
Received 02 July 2012
Link to Fulltext
<< Previous article | Volume 47, Issue 5 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100