Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2012-4pp.385-389

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 47, Issue 4 / 2012 | Next article >>
V.F. Chub, "Statement of the Two-Body Problem in the Parameters of the Extended Galilei Group," Mech. Solids. 47 (4), 385-389 (2012)
Year 2012 Volume 47 Number 4 Pages 385-389
DOI 10.3103/S0025654412040036
Title Statement of the Two-Body Problem in the Parameters of the Extended Galilei Group
Author(s) V.F. Chub (Korolev Rocket and Space Corporation "Energia," Lenina4A, Korolev, Moscow Oblast, 141070 Russia, v.chub@mail.ru)
Abstract The classical mechanical problem on the motion on a system of two or several bodies is stated in terms of parameters of the 13-parameter extended Galilean group (translations, rotations, boosts, and gravitational transformations) without using such traditional notions as "point" and "force."
Keywords n-body problem, group-theoretic approach, extended Galilei group
References
1.  V. Ph. Zhuravlev, Foundations of Theoretical Mechanics (Fizmatlit, Moscow, 2008) [in Russian].
2.  S. V. Gromov, Physics: Mechanics. Relativity. Electrodynamics (Prosveshchenie, Moscow, 2003) [in Russian].
3.  M. B. Balk, Elements of Space Flight Dynamic (Nauka, Moscow, 1965) [in Russian].
4.  I. M. Yaglom, Geometric Transformations, Vol. 1: Motions and Similarity Transformations (Gostekhizdat, Moscow, 1955) [in Russian].
5.  V. N. Branets, Lectures in the Theory of Strapdown Inertial Navigation Control Systems (MFTI, Moscow, 2009) [in Russian].
6.  S. N. Kirpichnikov and V. S. Novoselov, Mathematical Aspects of Kinematics of Solids (Izd-vo LGU, Leningrad, 1986) [in Russian].
7.  V. P. Vizgin, "Erlangen Program" and Physics (Nauka, Moscow, 1975) [in Russian].
8.  V. F. Chub, "Formulation of the Problem of Inertial Navigation: A Group Theory Approach," Kosmich. Issled. 45 (2), 189-192 (2007) [Cosmic Res. (Engl. Transl.) 45 (2), 176-179 (2007)].
9.  V. F. Chub, "Use of the Conformal Group in the Theory of Inertial Navigation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 3-17 (2006) [Mech. Solids (Engl. Transl.) 41 (5), 1-12 (2006)].
10.  V. F. Chub, "On the Possibility of Application of One System of Hypercomplex Numbers in Inertial Navigation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 3-23 (2002) [Mech. Solids (Engl. Transl.) 37 (6), 1-17 (2002)].
11.  G. N. Duboshin, Celestial Mechanics. Fundamental Problems and Methods (Nauka, Moscow, 1968) [in Russian].
12.  M. F. Subbotin, Introduction to Theoretical Astronomy (Nauka, Moscow, 1968) [in Russian].
Received 22 June 2010
Link to Fulltext
<< Previous article | Volume 47, Issue 4 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100