Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2012-4pp.385-389

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 47, Issue 4 / 2012 | Next article >>
V.F. Chub, "Statement of the Two-Body Problem in the Parameters of the Extended Galilei Group," Mech. Solids. 47 (4), 385-389 (2012)
Year 2012 Volume 47 Number 4 Pages 385-389
DOI 10.3103/S0025654412040036
Title Statement of the Two-Body Problem in the Parameters of the Extended Galilei Group
Author(s) V.F. Chub (Korolev Rocket and Space Corporation "Energia," Lenina4A, Korolev, Moscow Oblast, 141070 Russia,
Abstract The classical mechanical problem on the motion on a system of two or several bodies is stated in terms of parameters of the 13-parameter extended Galilean group (translations, rotations, boosts, and gravitational transformations) without using such traditional notions as "point" and "force."
Keywords n-body problem, group-theoretic approach, extended Galilei group
1.  V. Ph. Zhuravlev, Foundations of Theoretical Mechanics (Fizmatlit, Moscow, 2008) [in Russian].
2.  S. V. Gromov, Physics: Mechanics. Relativity. Electrodynamics (Prosveshchenie, Moscow, 2003) [in Russian].
3.  M. B. Balk, Elements of Space Flight Dynamic (Nauka, Moscow, 1965) [in Russian].
4.  I. M. Yaglom, Geometric Transformations, Vol. 1: Motions and Similarity Transformations (Gostekhizdat, Moscow, 1955) [in Russian].
5.  V. N. Branets, Lectures in the Theory of Strapdown Inertial Navigation Control Systems (MFTI, Moscow, 2009) [in Russian].
6.  S. N. Kirpichnikov and V. S. Novoselov, Mathematical Aspects of Kinematics of Solids (Izd-vo LGU, Leningrad, 1986) [in Russian].
7.  V. P. Vizgin, "Erlangen Program" and Physics (Nauka, Moscow, 1975) [in Russian].
8.  V. F. Chub, "Formulation of the Problem of Inertial Navigation: A Group Theory Approach," Kosmich. Issled. 45 (2), 189-192 (2007) [Cosmic Res. (Engl. Transl.) 45 (2), 176-179 (2007)].
9.  V. F. Chub, "Use of the Conformal Group in the Theory of Inertial Navigation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 3-17 (2006) [Mech. Solids (Engl. Transl.) 41 (5), 1-12 (2006)].
10.  V. F. Chub, "On the Possibility of Application of One System of Hypercomplex Numbers in Inertial Navigation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 3-23 (2002) [Mech. Solids (Engl. Transl.) 37 (6), 1-17 (2002)].
11.  G. N. Duboshin, Celestial Mechanics. Fundamental Problems and Methods (Nauka, Moscow, 1968) [in Russian].
12.  M. F. Subbotin, Introduction to Theoretical Astronomy (Nauka, Moscow, 1968) [in Russian].
Received 22 June 2010
Link to Fulltext
<< Previous article | Volume 47, Issue 4 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100