Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 47, Issue 1 / 2012 | Next article >>
A.N. Sirotin, "Flat Turn as an Admissible Extremal in the Optimal Rotation Control Problem for an Asymmetric Body," Mech. Solids. 47 (1), 1-18 (2012)
Year 2012 Volume 47 Number 1 Pages 1-18
DOI 10.3103/S0025654412010013
Title Flat Turn as an Admissible Extremal in the Optimal Rotation Control Problem for an Asymmetric Body
Author(s) A.N. Sirotin (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, asirotin2@yandex.ru)
Abstract The problem of optimal control of rotation of an asymmetric rigid body is studied. An integrally quadratic functional characterizing the total energy costs is taken as the criterion. It is shown that, under certain conditions, the problem has a nontrivial extremal corresponding to a 180-degree flat turn, i.e., rotation about an axis fixed in the inertial space. The obtained results are based on an analysis of the equations arising after the application of the Pontryagin maximum principle (PMP) formalism.
Keywords optimal control, rotation, asymmetric rigid body, maximum principle
References
1.  A. N. Sirotin, "Analytical Solutions in the Problem of the Optimal Control of the Rotation of an Axisymmetric Body," Prikl. Mat. Mekh. 70 (2), 225-235 (2006) [J. Appl. Math. Mech. (Engl. Transl.) 70 (2), 199-209 (2006)].
2.  K. B. Alekseev, Extensive Control of Space Craft Attitude (Mashinostroenie, Moscow, 1977) [in Russian].
3.  A. N. Sirotin, "The Existence of Smooth Solutions in a Problem of the Optimal Control of the Rotation of an Axisymmetric Rigid Body," Prikl. Mat. Mekh. 72 (3), 399-409 (2008) [J. Appl. Math. Mech. (Engl. Transl.) 72 (3), 270-278 (2008)].
4.  E. Kamke, Handbook on Ordinary Differential Equations (Fizmatgiz, Moscow, 1961).
5.  A. I. Lurie, Analytic Mechanics (Fizmatgiz, Moscow, 1961; Springer, Berlin, 2001).
6.  L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1965; Pergamon Press, Oxford, 1976).
Received 16 June 2009
Link to Fulltext
<< Previous article | Volume 47, Issue 1 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100