| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 46, Issue 6 / 2011 | Next article >> |
S.I. Kuznetsov, A.V. Manzhirov, and I. Fedotov, "Heat Conduction Problem for a Growing Ball," Mech. Solids. 46 (6), 929-936 (2011) |
Year |
2011 |
Volume |
46 |
Number |
6 |
Pages |
929-936 |
DOI |
10.3103/S0025654411060124 |
Title |
Heat Conduction Problem for a Growing Ball |
Author(s) |
S.I. Kuznetsov (Bauman Moscow State Technical University, 2-ya Baumanskaya 5, Moscow, 105005 Russia, k_s_i@bk.ru)
A.V. Manzhirov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, manzh@ipmnet.ru, manzh@inbox.ru)
I. Fedotov (Tshwane University of Technology, P.B. X680, Pretoria, 0001 FIN-40014 South African Republic, fedotovi@tut.ac.za) |
Abstract |
The present paper studies unsteady temperature fields
in growing bodies of spherical shape. The growth occurs due to constant accretion of layers of constant thickness on the surface of the main body. In the general case, the temperature of the accreted material is different from that of the main body, which causes a heat flow on the accretion surface. The solution of the initial boundary-value problem of heat conduction is sought as an expansion in the complete system of eigenfunctions of the differential operator generated by the problem. |
Keywords |
growing body, heat conduction, ball, eigenfunctions, expansion, closed solution |
References |
1. | N. Kh. Arutyunyan,
"Boundary Value Problem of the Theory of Creep for a Body with Accretion,"
Prikl. Mat. Mekh.
41 (5), 783-789 (1977)
[J. Appl. Math. Mech. (Engl. Transl.)
41 (5), 804-810 (1977)]. |
2. | N. Kh. Arutyunyan and A. V. Manzhirov,
Contact Problems of Creep Theory
(Inst. Mekh. NAN, Erevan, 1999)
[in Russian]. |
3. | N. Kh. Arutyunyan, A. V. Manzhirov, and B. E. Naumov,
Contact Problems of Mechanics of Growing Bodies
(Nauka, Moscow, 1991)
[in Russian]. |
4. | N. Kh. Arutyunyan, B. E. Naumov, and Yu. N. Radaev,
Dynamical Expansion of Deformable Bodies,
Preprint No. 374
(IPMekh. AN SSSR, Moscow, 1989)
[in Russian]. |
5. | N. Kh. Arutyunyan, B. E. Naumov, and Yu. N. Radaev,
Waves in Growing Elastic Bodies,
Preprint No. 405
(IPMekh. AN SSSR, Moscow, 1989)
[in Russian]. |
6. | N. Kh. Arutyunyan, B. E. Naumov, and Yu. N. Radaev,
"A Mathematical Model of a Dynamically Accreted Deformable Body.
Part 1: Kinematics and Measure of Deformation of the Growing Body,"
Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela,
No. 6, 85-96 (1990)
[Mech. Solids (Engl. Transl.)
25 (6), 86-99 (1990)]. |
7. | N. Kh. Arutyunyan, B. E. Naumov, and Yu. N. Radaev,
"Mathematical Model of a Dynamically Accreted Deformable Body. Part 2:
Evolution Boundary-Value Problem of the Theory of the Growing Bodies,"
Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela,
No. 1, 72-86 (1991)
[Mech. Solids (Engl. Transl.)
26 (1), 67-80 (1991)]. |
8. | N. Kh. Arutyunyan, B. E. Naumov, and Yu. N. Radaev,
"Dynamic Expansion of an Elastic Layer.
Part 1: Motion of a Flow of Precipitated Particles at a Variable Rate,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 5, 6-24 (1992)
[Mech. Solids (Engl. Transl.)]. |
9. | N. Kh. Arutyunyan, B. E. Naumov, and Yu. N. Radaev,
"Dynamical Expansion of an Elastic Layer.
Part 2: The Case of Drop of Accreted Particles at a Constant Rate,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 6, 99-112 (1992)
[Mech. Solids (Engl. Transl.)]. |
10. | A. M. Dmitrieva, B. E. Naumov, and Yu. N. Radaev,
Expansion of a Thermoelastic Spherical Layer:
Application of Variational Approach,
Preprint No. 528
(IPMekh. RAN, Moscow, 1993)
[in Russian]. |
11. | B. E. Naumov and Yu. N. Radaev,
Thermomechanical Model of Accreted Body:
Variational Statement,
Preprint No. 527
(IPMekh. RAN, Moscow, 1993)
[in Russian]. |
12. | V. V. Metlov,
"On Expansion of Bodies at Finite Strains,"
Dokl. Akad. Nauk Armyan. SSR
80 (2), 87-91 (1985). |
13. | E. I. Rashba,
"Determination of Stresses in Arrays under the Action of Their Own Weight
with the Order of Their Erection,"
in Proc. Inst. of Structural Mechanics Acad. Sci. UkrSSR,
No. 18, 23-27 (1953). |
14. | V. D. Kharlab,
"Linear Theory of Creep of an Accreted Body,"
in Proc. Leningrad Inst. of Construction Engineering,
No. 49, 93-119 (1966). |
15. | A. V. Manzhirov and D. A. Parshin,
"Accretion of a Viscoelastic Ball in a Centrally Symmetric Force Field,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 1, 66-83 (2006)
[Mech. Solids (Engl. Transl.)
41 (1), 51-64 (2006)]. |
16. | S. A. Lychev,
"Coupled Dynamic Thermoviscoelasticity Problem,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 5, 95-113 (2008)
[Mech. Solids (Engl. Transl.)
43 (5), 769-784 (2008)]. |
17. | S. A. Lychev, A. V. Manzhirov, and S. V. Joubert,
"Closed Solutions of Boundary-Value Problems of Coupled Thermoelasticity,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 4, 138-154 (2010)
[Mech. Solids (Engl. Transl.)
45 (4), 610-623 (2010)]. |
18. | S. A. Lychev, T. N. Lycheva, and A. V. Manzhirov,
"Unsteady Vibration of a Growing Circular Plate,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 2, 199-208 (2011)
[Mech. Solids (Engl. Transl.)
46 (2), 325-333 (2010)]. |
19. | W. Nowacki,
Theory of Elasticity
(PWN, Warsaw, 1970; Mir, Moscow, 1975). |
20. | Ph. M. Morse and H. Feshbach,
Methods of Theoretical Physics
(McGraw-Hill, New York, 1953; Inostr. Lit., Moscow, 1958). |
|
Received |
18 August 2011 |
Link to Fulltext |
|
<< Previous article | Volume 46, Issue 6 / 2011 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|