Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-6pp.898-912

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 46, Issue 6 / 2011 | Next article >>
V.S. Shorkin, "Nonlinear Dispersion Properties of High-Frequency Waves in the Gradient Theory of Elasticity," Mech. Solids. 46 (6), 898-912 (2011)
Year 2011 Volume 46 Number 6 Pages 898-912
DOI 10.3103/S0025654411060094
Title Nonlinear Dispersion Properties of High-Frequency Waves in the Gradient Theory of Elasticity
Author(s) V.S. Shorkin (Orel State Technical University, Naugorskoe sh. 29, Orel, 302020, Russia, vshorkin@yandex.ru)
Abstract The dispersion law ceases to be linear already at ultrasonic frequencies of elastic vibrations of particles as mechanical perturbation waves propagate through the medium. A variant of the continuum model of an elastic medium is proposed which is based on the assumption of pair and triplet potential interaction between infinitely small particles; this allows one to represent the dispersion law with any required accuracy. The corresponding wave equation, which is still linear, can have an arbitrarily large order of partial derivatives with respect to the coordinates. It is suggested that the results of comparing the representations of the dispersion law from the elasticity and solid-state physics viewpoints should be used to determine nonclassical characteristics of the elastic state of the medium. The theoretical conclusions are illustrated with calculations performed for plane waves propagating through aluminum.
Keywords dispersion law, elastic medium models, theory of elasticity, interaction potential
References
1.  S. S. Gorelik and M. Ya. Dashevskii, Semiconductor Materials and Metallography Materials Science of Semiconductors and Insulators (Metallurgiya, Moscow, 1973) [in Russian].
2.  I. V. Vitcovsky, F. N. Konev, V. S. Shorkin, et al., "Adhesion Energy Estimation of Some Composite Materials," Plasma Dev. Oper. 11 (2), 81-87 (2003).
3.  E. M. Lifshitz, Theory of Molecular Attraction Forces between Condensed Bodies, in Collected Works of E. M. Lifshitz, Ed. by L. P. Pitaevskii and Yu. G. Rudnyi (FIZMATLIT, Moscow, 2004) [in Russian].
4.  M. B. Partenskii, "Self-Consistent Electron Theory of a Metallic Surface," Uspekhi Fiz. Nauk 128 (1), 69-106 (1979) [Sov. Phys. Uspekhi (Engl. Transl.) 22 (5), 330-Ö351 (1979)].
5.  M. V. Mamonova, R. V. Poterin, and V. V. Prudnikov, "Calculations of the Adhesion Characteristics of Metals in the Model of Generalized Heine-Abarenkov Potential," Vestnik Omsk Gos. Univ., No. 2, 44-46 (1996).
6.  M. N. Magomedov, "Dependence of the Surface Energy on the Size and Shape of a Nanocrystal," Fiz. Tverd. Tela 46 (5), 924-937 (2004) [Phys. Solid State (Engl. Transl.) 46 (5), 954-968 (2004)].
7.  S. A. Lurie and P. A. Belov, "Theory of Media with Conserved Dislocations. Particular Cases: The Cosserat and Aero-Kuvshinskii Continua, Porous Media, and Media with `Twinning'," in Contemporary Problems of Mechanics of Heterogeneous Media, Vol. 1 (Inst. Problem Mekhaniki RAN, Moscow, 2005), pp. 100-132 [in Russian].
8.  I. V. Vitkovsky, A. N. Konev, and V. S. Shorkin, "Predicting Adhesive Properties of Liquid-Metal Materials for Fusion Reactor Blankets," Zh. Tekhn. Fiz. 79 (2), 11-16 (2009) [Tech. Phys. (Engl. Transl.) 54 (2), 170-175 (2009)].
9.  C. Kittel, Introduction to Solid-State Physics (Wiley, New York, 1971; Nauka, Moscow, 1978).
10.  V. I. Erofeev, Wave Processes in Solids with Microstructure (Izd-vo MGU, Moscow, 1999) [in Russian].
11.  V. I. Erofeev and V. M. Rodyushkin, "Observation of Elastic Wave Dispersion in Grained Composite and a Mathematical Model for Its Description," Akust. Zh. 38 (6), 1116-1117 (1992) [Sov. Phys. Acoust. (Engl. Transl.) 38, 611 (1992)].
12.  H. Askes, T. Bennett, and E. C. Aifantis, "A New Formulation and CO-Implementation of Dynamically Consistent Gradient Elasticity," Int. J. Numer. Engng 72 (1), 111-126 (2007).
13.  A. C. Eringen, "Vistas of Nonlocal Continuum Physics," Int. J. Engng Sci. 30 (10), 1551-1565 (1992).
14.  A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002).
15.  N. F. Morozov and M. V. Paukshto, Discrete and Hybrid Models of Fracture Mechanics (Izdat. St. Petersburg Gos. Univ., St. Petersburg, 1995) [in Russian].
16.  A. M. Krivtsov and V. P. Myasnikov, "Modeling of the Change of the Internal Structure and Stress State in a Material Subjected to High Thermal Loads on the Basis of the Particle Dynamics Method," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 88-103 (2005) [Mech. Solids (Engl. Transl.) 40 (1), 72-85 (2005)].
17.  A. D. B. Woods, W. Cochran, and B. N. Brockhouse, "Lattice Dynamics of Alkali Halide Crystals," Phys. Rev. Ser. 2 119 (3), 980-999 (1960).
18.  A. C. Eringen, "Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves," Int. J. Engng Sci 10 (5), 425-435 (1972).
19.  A. A. Il'yushin and V. A. Lomakin, "Moment Theories in Mechanics of Solids," in Strength and Plasticity (Nauka, Moscow, 1971), pp. 54-61 [in Russian].
20.  Yu. Z. Povstenko, "Nonlocal Gradient Theory of Elasticity and Their Application to the Description of Defects in Rigid Bodies," Mat. Metody Fiz.-Mekh. Polya 46 (2), 136-146 (2003).
21.  V. A. Gordon and V. S. Shorkin, "Effect Connected with Passing of High Frequency Longitudinal Wave through Film-Mount System in the Direction Normal to the Contact Plane," in Proc. 27th Intern. Symp. on Acoust. Imaging, Saarbrucken, Germany, 2003 (2004), pp. 333-341.
22.  L. I. Sedov, Continuum Mechanics, Vol. 2 (Nauka, Moscow, 1970) [in Russian].
23.  D. V. Sivukhin, The General Course of Physics, Vol. 1: Mechanics (Nauka, Moscow, 1989) [in Russian].
24.  A. A. Il'yushin, "Nonsymmetry of Strain and Stress Tensors in Continuum Mechanics," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 5, 6-14 (1996) [Moscow Univ. Math. Bull. (Engl. Transl.)].
25.  V. S. Shorkin, "Stress State of Materials under Nonclassical Actions," in Problems of Nonlinear Mechanics, Collection of Papers on the Occasion of L. A. Tolokonnikov's Eighties Birthday (Tula Gos. Univ., Tula, 2003), pp. 325-331 [in Russian].
26.  W. Rudin, Principles of Mathematical Analysis (New York, 1964; Mir, Moscow, 1966).
27.  B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (Nauka, Moscow, 1979) [in Russian].
28.  R. A. Tupin, "Theories of elasticity with couple-stress," Arch. Rat. Mech. Anal. 17, 85-112 (1964) [in Mechanics, Periodic Collection of Translations of Foreign Papers (Russ. Transl.), No. 3, 113-140 (1965)].
29.  V. L. Berdichevskii, Variational Principles of Continuum Mechanics (Nauka, Moscow, 1983) [in Russian].
30.  W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1975).
31.  V. M. Kontorovich, "Dynamic Equations of the Theory of Elasticity of Metals," Uspekhi Fiz. Nauk 142 (2), 265-307 (1984) [Sov. Phys. Uspekhi (Engl. Transl.) 27 (2), 134Ö-158 (1984)].
32.  L. A. Girifalco, Statistical Physics of Materials, 1973 Statistical Mechanics of Solids (Mir, Moscow, 1975) [in Russian].
33.  J. E. Mayer and M. Geppert-Mayer, Statistical Mechanics (Wiley, New York, 1977; Mir, Moscow, 1980).
34.  A. M. Krivtsov and N. V. Krivtsova, "Method of Particles and Its Application to Mechanics of Solids," Dal'nevost. Mat. Zh. 3 (2), 254-276 (2002).
35.  D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969; Mir, Moscow, 1971).
36.  A. S. Azarov and V. S. Shorkin, "Consideration of the Influence of Three-Particle Interaction in Elastic Continuum on Its Mechanical Characteristics," in Proc. 47th Intern. Conf. "Actual Problems of Strength" (Nizhnii Novgorod, 2008), pp. 163-165 [in Russian].
37.  A. S. Azarov and V. S. Shorkin, "A Version of Taking Account of the Triple Potential Interaction in Many-Particle System," Electronic Journal "Investigated in Russia" 8, 65-71 (2009), http://zhurnal.ape.relarn.ru/articles/2009/008.pdf.
38.  M. Born and H. Kun, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954; Izd-vo Inostr. Liter., Moscow, 1958).
39.  G. Leibfried, Microscopic Theory of Mechanical and Thermal Properties of Crystals (Fizmatgiz, Moscow-Leningrad, 1963) [in Russian].
Received 23 January 2007
Link to Fulltext
<< Previous article | Volume 46, Issue 6 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100