Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2011-4pp.622-634

Archive of Issues

Total articles in the database: 10864
In Russian (»Á‚. –ņÕ. Ő““): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
Z.V. Nagoev and M.M. Oshkhunov, "Discrete-Dynamic Particle Method in Problems of Mechanics of Deformable Solids," Mech. Solids. 46 (4), 622-634 (2011)
Year 2011 Volume 46 Number 4 Pages 622-634
DOI 10.3103/S0025654411040121
Title Discrete-Dynamic Particle Method in Problems of Mechanics of Deformable Solids
Author(s) Z.V. Nagoev (Institute of Computer Science and Problems of Regional Administration, Kabardino-Balkar Scientific Center, Russian Academy of Sciences, I.†Armand 37a, Nalchik, 360000 Russia, zaliman@mail.ru)
M.M. Oshkhunov (Institute of Computer Science and Problems of Regional Administration, Kabardino-Balkar Scientific Center, Russian Academy of Sciences, I.†Armand 37a, Nalchik, 360000 Russia, muaed@inbox.ru)
Abstract We suggest a discrete-dynamic method for solving problems of mechanics of deformable solids, analyze the relation between this model and the classical theory of elasticity, interpret physical and mechanical constants, and compare the solutions obtained by the dynamic particle method with the well-known solutions of some problems of the theory of elasticity.
Keywords discrete-dynamic particle method, Hooke law, physically and geometrically nonlinear elasticity
References
1.  Yu. A. Amenzade, Theory of Elasticity (Vysshaya Shkola, Moscow, 1971) [in Russian].
2.  A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed. (Cambridge Univ. Press, Cambridge, 1927; ONTI, Moscow, 1935).
3.  N. I. Muskhelishvili, Some Fundamental Problems of Mathematical Elasticity Theory (Plane Theory) (Nauka, Moscow, 1966) [in Russian].
4.  V. V. Novozhilov, Theory of Elasticity (Sudpromgiz, Moscow, 1958) [in Russian].
5.  Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979) [in Russian].
6.  D. L. Bykov, "On Some Methods for Solving Problems of the Theory of Plasticity," in Elasticity and Nonelasticity, No. 4 (Izd-vo MGU, Moscow, 1975), pp. 119-139 [in Russian].
7.  D. L. Bykov, "On Some Relations between Stress and Strain Invariants in Physically Nonlinear Media," in Elasticity and Nonelasticity, No. 2 (Izd-vo MGU, Moscow, 1971), pp. 114-128 [in Russian].
8.  A. A. Il'yushin, Plasticity. Foundations of Mathematical Theory (Izd-vo AN SSSR, Moscow, 1963) [in Russian].
9.  M. M. Oshkhunov, "Rate of Convergence of Iterative Processes in Nonlinear Elasticity," Prikl. Mekh. 31 (1), 86-90 (1995) [Int. Appl. Mech. (Engl. Transl.) 31 (1), 79-82 (1995)].
10.  M. M. Oshkhunov and G. I. Komarov, "On the Solvability of Physically Nonlinear Problems of Thermoelasticity," Ukrain. Mat. Zh. 48 (7), 949-953 (1996) [Ukrain. Math. J. (Engl. Transl.) 48 (7), 1074-1078 (1996).].
11.  M. M. Oshkhunov and S. Ozden, "The General Stress and Strain Relationship in Nonlinear Materials," Int. J. Nonlin. Mech. 35, 763-767 (2000).
12.  O. C. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw-Hill, New York, 1971; Mir, Moscow, 1975).
13.  H. Kardestuncer, Finite Element Hand Book (McGraw-Hill, New York, 1987).
14.  R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).
15.  M. M. Oshkhunov, T. M. Batashov, R. D. Eleeva, and I. A. Mamieva, "Numerical Solution of Equations by the Dynamical Particle Method," in Science and Technology in the XXIst Century, Proc. 3rd Intern. Sci.-Techn. Conf., Vol. 2 (KBGU, Nalchik, 2007), pp. 41-46 [in Russian].
16.  A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].
17.  R. W. Hamming, Numerical Methods. For Scientists and Engineers (McGraw-Hill, New York, 1962; Nauka, Moscow, 1972).
18.  M. M. Oshkhunov and R. B. Tkhakakhov, "Mathematical Models and Methods for Computations of Polyvinylchloride Compositions," Plastich. Massy, No. 11, 43-47 (2007).
19.  M. M. Oshkhunov and S. Ozden, "The Conditions of Minimum Potential Energy and Castigliano's Functional in Nonlinear Media," Int. J. Nonlin. Mech. 38 (2), 71-77 (2003).
20.  A. M. Krivtsov and N. V. Krivtsova, "Method of Particles and Its Application to Mechanics of Solids," Dalnevost. Matem. Zh. DVO RAN 3 (2), 254-276 (2002).
21.  S. P. Timoshenko and J. N. Goodyear, Theory of Elasticity (McGraw-Hill, New York, 1951; Nauka, Moscow, 1975).
Received 29 May 2008
Link to Fulltext
<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100