Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-4pp.610-621

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
A.G. Demeshkin, E.V. Karpov, and V.M. Kornev, "Damage Accumulation in Specimens with Edge Crack in the Prefracture Region under Nonstationary Few-Cycle Loading," Mech. Solids. 46 (4), 610-621 (2011)
Year 2011 Volume 46 Number 4 Pages 610-621
DOI 10.3103/S002565441104011X
Title Damage Accumulation in Specimens with Edge Crack in the Prefracture Region under Nonstationary Few-Cycle Loading
Author(s) A.G. Demeshkin (Lavrentyev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, pr-t Akad. Lavrentyeva 15, Novosibirsk, 630090 Russia)
E.V. Karpov (Lavrentyev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, pr-t Akad. Lavrentyeva 15, Novosibirsk, 630090 Russia, evkarpov@mail.ru)
V.M. Kornev (Lavrentyev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, pr-t Akad. Lavrentyeva 15, Novosibirsk, 630090 Russia, kornev@hydro.nsc.ru)
Abstract We present the results of experimental studies of strain and fracture of the aluminum alloy D16-T and titanium alloy VT5-1 under nonstationary few-cycle loading by a symmetric three-point bending and consider several loading conditions under which the load is gradually increased or decreased. The parameter determining the damage accumulation process is found. Special attention is paid to the distinction between the damage accumulation mechanisms in titanium and aluminum alloys. It is shown that, as a rule, the damage accumulation is of nonlinear character and significantly depends on the type of the stepwise variation in the load (increase or decrease). In experiments, we also succeeded in relating the characteristic point on the "deflection-force" graph in the case of single loading to a similar point on the graph constructed for a few-cycle loading, which permits predicting the structure survivability in a few-cycle loading from a single loading.
Keywords few-cyclic loading, crack, damage accumulation, embrittlement, three-point bending, prefracture region
References
1.  O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, et al., Fracture Mechanics and Material Strength, Vol. 4: Fatigue and Cyclic Crack Growth Resistance of Structural Materials (Naukova Dumka, Kiev, 1990) [in Russian].
2.  V. I. Vladimirov, Physical Nature of the Fracture of Metals (Metallurgiya, Moscow, 1984) [in Russian].
3.  A. A. Shanyavskii, Safe Fatigue Fracture of Aircraft Structural Elements. Synergetics in Engineering Applications (Monografiya, Ufa, 2003) [in Russian].
4.  C. Laird and G. C. Smith, "Crack Propagation in High Stress Factigue," Phill. Mag.: J. Theor. Exp. Appl. Phys. 7 (77), 847-857 (1962).
5.  C. Laird, "The Influence of Metallurgical Structure on the Mechanism of Fatigue Crack Propagation," in Fatigue Crack Propagation, ASTM STP 415 (ASTM, Philadelphia, 1967), pp. 131-168.
6.  K. M. Lal, S. B. L. Garg, and I. Le May, "On the Effective Stress Range Factor in Fatigue," Trans ASME. J. Engng Mater. Tech. 102, 147-152 (1980) [Trudy Amer. Obshch. Inzh. Mekh. Teoretich. Osn. Inzh. Rasshch. (Russ. Transl.) 102 (1), 98-104 (1980)].
7.  V. M. Kornev, "Transition from form Quasiviscous to Brittle Fracture," Deformats. Razrush. Mat., No. 2, 2-11 (2008).
8.  State Standard (GOST) 25.506-85. Methods for Mechanical Tests of Metals. Determination of Crack Growth Resistance Characteristics (Fracture Viscosity) under Static Loading, (State Standard, Moscow, 1985) [in Russian].
9.  V. M. Kornev, "Stress Distribution and Crack Opening in the Prefracture Zone (Neuber-Novozhilov Approach)," Fizich. Mezomekh. 7 (3), 53-62 (2004).
10.  F. A. McClintock and G. R. Irwin, "Plasticity Aspects of Fracture Mechanics," in Fracture Toughness Testing and Its Applications ASTM STP 381 (ASTM, Philadelphia, 1965), pp. 84-113 [Applied Problems of Fracture Viscosity (Mir, Moscow, 1968), pp. 143-186 (Russ. Transl.)].
11.  V. Z. Parton, Fracture Mechanics: From Theory to Practice (LKI, Moscow, 2007) [in Russian].
12.  L. M. Kachanov, Foundations of the Theory of Plasticity (Nauka, Moscow, 1969; North-Holland, Amsterdam, 1971).
13.  A. F. Nikitenko, Creeping and Long-Term Strength of Metallic Materials (Izd-vo Inst. Gidrodin. SO RAN, Novosibirsk, 1997) [in Russian].
14.  L. F. Coffin, Jr., and N. Y. Schenectady, "A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal," Trans. ASME 76 (6), 931-950 (1954).
15.  A. G. Demeshkin and V. M. Kornev, "Crack Path Kinking under Generalized Stress State," Zh. Prikl. Mekh. Tekhn. Fiz. 50 (3), 205-213 (2009) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 50 (3), 532-539 (2009)].
Received 04 May 2008
Link to Fulltext
<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100