Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2011-3pp.368-379

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 46, Issue 3 / 2011 | Next article >>
N.A. Abrosimov and N.A. Kulikova, "Parameter Identification in Viscoelastic Strain Models for Composite Materials by Analyzing Impulsive Loading of Shells of Revolution," Mech. Solids. 46 (3), 368-379 (2011)
Year 2011 Volume 46 Number 3 Pages 368-379
DOI 10.3103/S0025654411030046
Title Parameter Identification in Viscoelastic Strain Models for Composite Materials by Analyzing Impulsive Loading of Shells of Revolution
Author(s) N.A. Abrosimov (Research Institute for Mechanics, Lobachevsky State University of Nizhni Novgorod, pr-t Gagarina 23, korp. 6, GSP-1000, Nizhni Novgorod, 603600 Russia,
N.A. Kulikova (Research Institute for Mechanics, Lobachevsky State University of Nizhni Novgorod, pr-t Gagarina 23, korp. 6, GSP-1000, Nizhni Novgorod, 603600 Russia,
Abstract An analytical-experimental method for identifying the material constants and functions in the constitutive relations of viscoelastic strain for homogeneous composite materials is proposed. The method is based on the minimization of the discrepancy between the results of numerical and experimental modeling of nonstationary deformation processes in shells of revolution made of the materials under study. The approach was tested and its adequacy was shown in problems of determining the rigidity and rheological characteristics of composite materials from the results of comparative analytical-experimental study of nonstationary deformation of spherical and cylindrical shells under impulsive loading.
Keywords mathematical model, identification, viscoelastic strain, numerical method, impulsive loading
1.  G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Vibration-Absorbing Properties of Structural Materials (Naukova Dumka, Kiev, 1971; Warsaw, 1976) [in Russian, in Polish].
2.  B. L. Pelekh and B. I. Salyak, Experimental Methods Investigation of Dynamical Properties of Composite Structures (Naukova Dumka, Kiev, 1990) [in Russian].
3.  N. A. Alfutov, P. A. Zinoviev, and L. P. Tairova, "Identation of Elastic Characteristics of Unidirectional Materials from the Results of Sandwich Composite Tests," Strength Computations, Vol. 30 (Mashinostroenie, Moscow, 1989), pp. 16-31 [in Russian].
4.  Yu. V. Suvorova, V. S. Dobrynin, I. N. Statnikov, and Yu. Ya. Bart, "Determining the Properties of a Composite in a Structure by the Parametric-Identification Method," Mekh. Komp. Mater., No. 1, 150-157 (1989) [Mech. Comp. Mater. (Engl. Transl.) 25 (1), 130-136 (1989)].
5.  G. V. Vorontsov, B. I. Plyushchev, and A. I. Reznichenko, "Determination of Reduced Elastic Characteristics of Reinforced Composite Materials by Tensometric Inverse Problem Methods," Mekh. Komp. Mater., No. 4, 733-736 (1990) [Mech. Comp. Mater. (Engl. Transl.) 26 (4), 551 (1990)].
6.  I. G. Teregulov, R. A. Kayumov, Yu. I. Butenko, and D. Kh. Safiullin, "Determination of the Mechanical Indices of Composite Materials by Testing Multilayered Samples," Mekh. Komp. Mater. 31 (5), 607-615 (1995) [Mech. Comp. Mater. (Engl. Transl.) 31 (5), 446-452 (1995)].
7.  P. S. Frederiksen, "Experimental Procedure and Results for the Identification of Elastic Constants of Thick Orthotropic Plates," J. Comp. Mater. 31 (4), 360-382 (1997).
8.  V. P. Matveenko and N. A. Yurlova, "Identification of Effective Elastic Constants of Composite Shells on the Basis of Static and Dynamic Experiments," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 12-20 (1998) [Mech. Solids (Engl. Transl.) 33 (3), 8-14 (1998)].
9.  R. Rikards and A. Chate, "Identification of Mechanical Properties of Composites Based on Design of Experiments," Mekh. Komp. Mater. 34 (1), 3-16 (1998) [Mech. Comp. Mater. (Engl. Transl.) 34 (1), 1-11 (1998)].
10.  R. A. Kayumov, "Extended Problem of the Identification of Mechanical Characteristics of Materials on the Basis of Testing of Structures," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 94-103 (2004) [Mech. Solids (Engl. Transl.) 39 (2), 74-81 (2004)].
11.  A. G. Fedorenko, V. I. Tsypkin, A. G. Ivanov, et al., "Peculiarities of the Dynamic Deformation and Fracture of Cylindrical Glass-Fiber Reinforced Plastic Shells upon Internal Impulse Loading," Mekh. Komp. Mater., No. 1, 90-94 (1983) [Mech. Comp. Mater. (Engl. Transl.) 19 (1), 75-79 (1983)].
12.  A. G. Demeshkin, M. E. Kozeko, V. M. Kornev, and V. D. Kurguzov, "Damping Characteristics of Composite Structural Materials Fabricated by Winding," Zh. Prikl. Mekh. Tekhn. Fiz. 42 (1), 190-195 (2001) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 42 (1), 169-173 (2001)].
13.  L. V. Volodina, N. N. Gerdyukov, E. V. Zotov, et al., "Reaction of Hemispherical Shells Made of Explosives to the Action of Impulsive Loading (Experiment-Calculated Studies). Matters, Materials, and Structures under Intensive Dynamical Actions," in Proc. Intern. Conf. "V Kharitonov Thematic Scientific Readings" (Vseros. nauch.-issled. in-t eksperim. fiziki, Sarov, 2003) [in Russian].
14.  V. V. Vasiliev and S. A. Lurie, "To the Problem of Construction of Nonclassical Theories of Plates," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 2, 158-167 (1990) [Mech. Solids (Engl. Transl.)].
15.  N. A. Abrosimov and V. G. Bazhenov, Nonlinear Problems of Composite Structure Dynamics (Izd-vo NNGU, Nizhnii Novgorod, 2002) [in Russian].
16.  M. A. Koltunov, "On Computation of Flexible Depressed Orthotropic Shells with Nonlinear Heredity," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 5, 79-88 (1964) [Moscow Univ. Math. Bull.].
17.  V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity (Gostekhizdat, Moscow, 1948) [in Russian].
18.  G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1980; Springer, New York, 1982).
19.  I. M. Sobol', "Global Sensitivity Indices Used to Study Nonlinear Mathematical Models," Mat. Modelirovanie 17 (9), 43-52 (2005) [Math. Models Comput. Simul. (Engl. Transl.)].
20.  I. M. Sobol', Monte Carlo Numerical Methods (Nauka, Moscow, 1973) [in Russian].
21.  E. J. Huag and J. S. Arora, Applied Optimal Design: Mechanical and Structural Systems (Wiley, New York, 1979; Mir, Moscow, 1983).
22.  D. M. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, 1972; Mir, Moscow, 1975).
23.  A. S. Antonov, Parallel Programming with MPI Technology: a Handbook (Izd-vo MGU, Moscow, 2004) [in Russian].
24.  F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, et al., Physics of Explosion (Nauka, Moscow, 1975) [in Russian].
25.  E. V. Zotov, N. N. Gerdyukov, and L. V. Volodina, "A Miniature Spherical Explosive Loading Device," Fiz. Goreniya Vzryva 32 (2), 134-140 (1996) [Comb. Expl. Shock Waves (Engl. Transl.) 32 (2), 233-238 (1996)].
26.  E. K. Ashkenazi and E. V. Ganov, Anisotropy of Structural Materials, Handbook (Mashinostroenie, Leningrad, 1980) [in Russian].
Received 28 November 2008
Link to Fulltext
<< Previous article | Volume 46, Issue 3 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100