Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2010-6pp.789-802

Archive of Issues

Total articles in the database: 9198
In Russian (. . ): 6504
In English (Mech. Solids): 2694

<< Previous article | Volume 45, Issue 6 / 2010 | Next article >>
S.A. Bochkarev and V.P. Matveenko, "Stability Analysis of Loaded Coaxial Cylindrical Shells with Internal Fluid Flow," Mech. Solids. 45 (6), 789-802 (2010)
Year 2010 Volume 45 Number 6 Pages 789-802
DOI 10.3103/S002565441006004X
Title Stability Analysis of Loaded Coaxial Cylindrical Shells with Internal Fluid Flow
Author(s) S.A. Bochkarev (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Koroleva 1, Perm, 614013 Russia, bochkarev@icmm.ru)
V.P. Matveenko (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Koroleva 1, Perm, 614013 Russia, mvp@icmm.ru)
Abstract We present numerical results for dynamical stability of loaded coaxial shells of revolution interacting with the internal fluid flow. The motion of the incompressible fluid is described in the framework of the theory of frictionless potential flow, whereas the static load acting on the shells is caused by the steady forces of viscous drag arising in the viscous turbulent flow in a closed channel. For shells with different boundary conditions, we study how the stability boundary is affected by the value of the gap between the shells for different versions of the outer shell rigidity and fluid flow. We show that, as in the case of unloaded coaxial shells, there is a significant deviation from the previous numerical and analytical results.
Keywords coaxial shells, potential fluid, viscous fluid, FEM, divergence, flutter
References
1.  M. P. Païdoussis, S. P. Chan, and A. K. Mirsa, "Dynamics and Stability of Coaxial Cylindrical Shells Containing Flowing Fluid," J. Sound Vibr. 97 (2), 201-235 (1984).
2.  M. P. Païdoussis, V. B. Nguyen, and A. K. Mirsa, "A Theoretical Study of the Stability of Cantilevered Coaxial Cylindrical Shells Conveying Fluid," J. Fluids Struct. 5 (2), 127-164 (1991).
3.  M. P. Païdoussis, A. K. Mirsa, and S. P. Chan, "Dynamics and Stability of Coaxial Cylindrical Shells Conveying Viscous Fluid," ASME J. Appl. Mech. 52 (2), 389-396 (1985).
4.  M. P. Païdoussis, A. K. Mirsa, and V. B. Nguyen, "Internal- and Annular-Flow-Induced Instabilities of a Clamped-Clamped or Cantilevered Cylindrical Shell in a Coaxial Conduit: The Effects of System Parameters," J. Sound Vibr. 159 (2), 193-205 (1992).
5.  V. B. Nguyen, M. P. Païdoussis, and A. K. Mirsa, "A CFD-Based Model for the Study of the Stability of Cantilevered Coaxial Cylindrical Shells Conveying Viscous Fluid," J. Sound Vibr. 176 (1), 105-125 (1994).
6.  A. El. Chebair, M. P. Païdoussis, and A. K. Mirsa, "Experimental Study of Annular-Flow-Induced Instabilities of Cylindrical Shells," J. Fluids Struct. 3 (4), 349-364 (1989).
7.  V. B. Nguyen, M. P. Païdoussis, and A. K. Mirsa, "An Experimental Study of the Stability of Cantilevered Coaxial Cylindrical Shells Conveying Fluid," J. Fluids Struct. 7 (8), 913-930 (1993).
8.  M. Amabili and R. Garziera, "Vibrations of Circular Cylindrical Shells with Nonuniform Constraints, Elastic Bed, and Added Mass; Part III: Steady Viscous Effects on Shells Conveying Fluid," J. Fluids Struct. 16 (6), 795-809 (2002).
9.  S. A. Bochkarev and V. P. Matveenko, "Numerical Simulation of Dynamical Behavior of Coaxial Cylindrical Shells Conveying Fluid," in Proc. XVI Winter School in Continuum Mechanics (Continuum Mechanics as Foundation of Modern Technologies), CD (Perm, IMSS UrO RAN, 2009) [in Russian].
10.  V. L. Biderman, Mechanics of Thin-Walled Structures (Mashinostroenie, Moscow, 1977) [in Russian].
11.  S. A. Bochkarev and V. P. Matveenko, "Numerical Modelling of the Stability of Loaded Shells of Revolution Containing Fluid Flows," Zh. Prikl. Mekh. Tekhn. Fiz. 49 (2), 185-195 (2008) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 49 (2), 313-322 (2008)].
12.  A. S. Vol'mir, Shells in Fluid Flow. Problems of Hydroelasticity (Nauka, Moscow, 1979) [in Russian].
13.  C. A. J. Fletcher, Computational Galerkin Methods (Springer, New York-Berlin, 1984; Mir, Moscow, 1988).
14.  S. A. Bochkarev and V. P. Matveenko, "Numerical Study of the Influence of Boundary Conditions on the Dynamic Behavior of a Cylindrical Shell Conveying a Fluid," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 189-199 (2008) [Mech. Solids (Engl. Transl.) 43 (3), 477-486 (2008)].
15.  I. Michiyoshi and T. Nakajima, "Fully Developed Turbulent Flow in a Concentric Annulus," J. Nuclear Sci. Tech. 5 (7), 354-359 (1968).
16.  V. P. Matveenko, "On an Algorithm for Solving the Problem of Natural Vibrations of Elastic Bodies by Finite Element Method," in Boundary-Value Problems of Elasticity and Viscoelasticity (Ural Sci. Center, USSR Akad. Sci., Sverdlovsk, 1980), pp. 20-24 [in Russian].
17.  A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems (Prentice-Hall, Englewood Cliffs, New Jersey, 1981; Mir, Moscow, 1984).
Received 20 October 2009
Link to Fulltext http://www.springerlink.com/content/t1622663318616w7/
<< Previous article | Volume 45, Issue 6 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100