Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-4pp.648-656

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
D.B. Volkov-Bogorodskii and S.A. Lurie, "Eshelby Integral Formulas in Gradient Elasticity," Mech. Solids. 45 (4), 648-656 (2010)
Year 2010 Volume 45 Number 4 Pages 648-656
DOI 10.3103/S0025654410040138
Title Eshelby Integral Formulas in Gradient Elasticity
Author(s) D.B. Volkov-Bogorodskii (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 117334 Russia, v-b1957@yandex.ru)
S.A. Lurie (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 117334 Russia, lurie@ccas.ru)
Abstract Eshelby integral formulas play a fundamental role in mechanics of composite materials, because they provide an efficient tool for determining the average properties of dispersion-filled materials. For example, their use in the framework of the self-consistent averaging method actually gives a final and quite precise solution to the problem of determining effective physical and mechanical properties of filled composites up to large relative contents of inclusions and almost all relations between the phase characteristics of the composite. In the present paper, we generalize the Eshelby integral formulas to the gradient theory of elasticity. This provides the possibility for using efficient methods for estimating the average characteristics of micro and nano-structured materials in the framework of gradient theories, which permit taking the scale effects into account correctly, and hence find wider and wider applications in describing the mechanical and physical processes.
Keywords composites, effective properties, gradient theory, special representations of solutions, self-consistency method
References
1.  R. D. Mindlin, "Elasticity, Piezoelasticity and Crystal Lattice Dynamics," J. Elasticity 2 (4), 217-280 (1972).
2.  E. C. Aifantis, "Gradient Effects at the Macro, Micro and Nano Scales," J. Mech. Behav. Mater. 5 (3), 335-353 (1994).
3.  E. L. Aero and E. V. Kuvshinskii, "Fundamental Equations of the Theory of Elastic Media With Rotationally Interacting Particles," Fiz. Tverd. Tela 2 (7), 1399-1409 (1960) [Sov. Phys. Solid State (Engl. Transl.) 2, 1272-1281 (1960)].
4.  P. A. Belov and S. A. Lurie, "A Continuum Model of Microheterogeneous Media," Prikl. Mat. Mekh. 73 (5), 833-848 (2009) [J. Appl. Math. Mech. (Engl. Transl.) 73 (5), 599-608 (2009)].
5.  E. Cosserat and F. Cosserat, Théorie des Corps Déformables (Hermann, Paris, 1909).
6.  N. A. Fleck and J. W. Hutchinson, "Strain Gradient Plasticity," Adv. Appl. Mech. 33, 295-361 (1997).
7.  R. D. Mindlin, "Micro-Structure in Linear Elasticity," Arch. Rat'l Mechs. Anal. 16 (1), 51-78 (1964).
8.  G. A. Maugin, "Material Forces: Concepts and Applications," Appl. Mech. Rev. 48, 213-245 (1995).
9.  G. A. Maugin, "On the Structure of the Theory of Polar Elasticity," Phil. Trans. Royal. Soc. London. Ser. A 356 (1741), 1367-1395 (1998).
10.  G. A. Maugin, V. I. Alshits, and H. O. K. Kirchner, "Elasticity in Multilayers: Properties of the Propagation Matrix and Some Applications," Math. Mech. Solids 6, 481-502 (2001).
11.  S. Lurie and P. Belov, "Cohesive Field: Barenblatt's Hypothesis as Formal Corollary of Theory of Continuous Media with Conserved Dislocations," Int. J. Fract. 50 (1-2), 181-194 (2008).
12.  S. Lurie, P. Belov, D. B. Volkov-Bogorodskii, and N. Tuchkova, "Nanomechanical Modeling of the Nanostructures and Dispersed Composites," Comp. Mater. Sci. 28 (3-4), 529-539 (2003).
13.  S. Lurie, P. Belov, and N. Tuchkova, "The Application of the Multiscale Models for Description of the Dispersed Composites," Int. J. Comp. Mater. Sci. Ser. A 36 (2), 145-152 (2005).
14.  S. Lurie, P. Belov, D. B. Volkov-Bogorodskii, and N. Tuchkova, "Interphase Layer Theory and Applications in the Mechanics of Composite Materials," J. Mat. Sci. 41 (20), 6693-6707 (2006).
15.  R. A. Toupin, "Theories of Elasticity with Couple-Stress," Arch. Ration. Mech. Anal. 17 (2), 85-112 (1964).
16.  P. Christensen, Mechanics of Composite Materials (Mir, Moscow, 1982) [in Russian].
17.  J. D. Eshelby, Continual Theory of Dislocations (Inostr. Lit-ra, Moscow, 1963) [in Russian].
18.  D. B. Volkov-Bogorodskii, "Approach to Problems of Interaction between Acoustic and Elastic Media by Using the Block Multifield Method," in Dynamical and Technological Problems of Structural and Continuum Mechanics. Proc. 11th Intern. Symp., Vol. 2 (MAI, Moscow, 2005), pp. 17-23 [in Russian].
19.  Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1 (McGraw-Hill, New York, 1953; Inostr. Lit., Moscow, 1958).
20.  W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1975).
Received 11 May 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100