Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-4pp.562-574

Archive of Issues

Total articles in the database: 11223
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8011
In English (Mech. Solids): 3212

<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
A.L. Svistkov, "A Continuum-Molecular Model of Oriented Polymer Region Formation in Elastomer Nanocomposite," Mech. Solids. 45 (4), 562-574 (2010)
Year 2010 Volume 45 Number 4 Pages 562-574
DOI 10.3103/S0025654410040060
Title A Continuum-Molecular Model of Oriented Polymer Region Formation in Elastomer Nanocomposite
Author(s) A.L. Svistkov (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Koroleva 1, Perm, 614013 Russia, svistkov@icmm.ru)
Abstract An approach for constructing a continuum-molecular model of a polymer material is proposed. The approach has the following advantages. It combines the convenience of dealing with the continuum representation, which permits numerically analyzing complicated processes at the nanolevel with the characteristic time measured in minutes. In addition, the model contains molecular representations which permit calculating the continuum properties with the specific features of interaction between links of molecular chains taken into account. Moreover, the state of the material can be inhomogeneous at the scale level that is several times greater than the dimension of a single link of the polymer chain.

One of the possible explanations of the process of formation of nanolayers of a polymer with specific properties is also proposed. It is shown that, as a result of interaction between polymer chain links, the influence is transferred from oriented regions to unoriented ones, which results in the growth of an oriented nanolayer on the surface of the active filler.
Keywords continuum model, nanocomposite, nonequilibrium state, layer, filler, orientation, polymer chains
References
1.  G. R. Hamed and S. Hatfield, "On the Role of Bound Rubber in Carbon-Black Reinforcement," Rubber Chem. Technol. 62, 143-156 (1989).
2.  S. Wolff, M.-J. Wang, and E. H. Tan, "Filler-Elastomer Intreraction. Part VII: Study of Bound Rubber," Rubber Chem. Technol. 66, 163-177 (1993).
3.  B. Meissner, "Bound Rubber and Elastomer-Filler Interaction," Rubber Chem. Technol. 68 (2), 297-310 (1995).
4.  S.-S. Choi, "Difference in Bound Rubber Formation of Silica and Carbon Black with Styrene-Butadiene Rubber," Polym. Adv. Tech. 13 (6), 466-474 (2002).
5.  S.-S. Choi, "Effect of Bound Rubber on Characteristics of Highly Filled Styrene-Butadiene Rubber Compounds with Different Types of Carbon Black," J. Appl. Polym. Sci. 93 (3), 1001-1006 (2004).
6.  S.-S. Choi, K.-J. Hwang, and B.-T. Kim, "Influence of Bound Polymer on Cure Characteristics of Natural Rubber Compounds Reinforced with Different Types of Carbon Blacks," J. Appl. Polym. Sci. 98 (5), 2282-2289 (2005).
7.  J. L. Leblanc, "A Molecular Explanation for the Origin of Bound Rubber in Carbon Black Filled Rubber Compounds," J. Appl. Polym. Sci. 66, 2257-2268 (1997).
8.  J. L. Leblanc, "Elastomer-Filler Interactions and the Rheology of Filled Rubber Compounds," J. Appl. Polym. Sci. 78 (8), 1541-1550 (2000).
9.  Y. Fukahori, "The Mechanics and Mechanism of the Carbon Black Reinforcement of Elastomers," Rubber Chem. Tech. 76 (2), 548-565 (2003).
10.  S. Kawabata, Y. Yamashita, H. Ooyama, and S. Yoshida, "Mechanism of Carbon-Black Reinforcement of Rubber Vulcanizate," Rubber Chem. Tech. 68 (2), 311-329 (1995).
11.  A. L. Svistkov and B. Lauke, "Structural-Phenomenological Simulation of the Mechanical Behavior of Rubbers," Vysokomolekul. Soed. Ser. A 50 (5), 892-902 (2008) [Polym. Sci. Ser. A (Engl. Transl.) 50 (5), 591-599 (2008)].
12.  V. M. Litvinov and P. A. M. Steeman, "EPDM-Carbon Black Interactions and the Reinforcement Mechanisms, as Studied by Low-Resolution 1H NMR," Macromolecules 32 (25), 8476-8490 (1999).
13.  J. Berriot, F. Lequeux, L. Monnerie et al., "Filler-Elastomer Interaction in Model Filled Rubbers, a 1H NMR Study," J. Non-Crystalline Solids 307-310, 719-724 (2002).
14.  G. Leu, Y. Liu, D. D. Werstler, and D. G. Cory, "NMR Characterization of Elastomer-Carbon Black Interactions," Macromolecules 37 (18), 6883-6891 (2004).
15.  S. Toki, I. Sics, S. Ran et al., "Molecular Orientation and Structural Development in Vulcanized Polyisoprene Rubbers during Uniaxial Deformation by in Situ Synchrotron X-Ray Diffraction," Polymer 44 (19), 6003-6011 (2003).
16.  S. Toki, I. Sics, B. S. Hsiao et al., "Structural Developments in Synthetic Rubber during Uniaxial Deformation by In Situ Synchrotron X-Ray Diffraction," J. Polym. Sci. P. B. Polym. Phys. 42 (6), 956-964 (2004).
17.  J. Rault, J. Marchal, P. Judeinstein, and P. A. Albouy, "Chain Orientation in Natural Rubber. Part II: 2H NMR Study," Eur. Phys. J. P. E. Soft Matter Biol. Phys. 21 (3), 243-261 (2006).
18.  M.-J. Wang, "The Role of Filler Networking in Dynamic Properties of Filled Rubber," Rubber Chem. Tech. 72 (2), 430-448 (1999).
19.  M. Klüppel, "The Role of Disorder in Filler Reinforcement of Elastomers on Vanishing Length Scales," Adv. Polym. Sci. 164, 1-86 (2003).
20.  J. G. Meier and M. Klüppel, "Carbon Black Networking in Elastomers Monitored by Dynamic Mechanical and Dielectric Spectroscopy," Macromolecular Mater. Engng 293 (1), 12-38 (2008).
21.  B. Lauke and I. A. Morozov, "Modeling of Structure Evolution of Filled Elastomers under Uniaxial Elongation," Int. J. Multiscale Comp. Engng 7, 251-261 (2009).
22.  T. A. Vilgis, G. Heinrich, and M. Klüppel, Reinforcement of Polymer Nano-Composites: Theory, Experiments and Applications (Cambridge Univ. Press, Cambridge, 2009).
23.  I. A. Morozov, B. Lauke, and G. Heinrich, "A New Structural Model of Carbon Black Framework in Rubbers," Comput. Mater. Sci. 47, 817-825 (2010).
24.  G. V. Kozlov, Yu. G. Yanovskii, and Yu. N. Karnet, "Fractal Model of Elastomer Reinforcement by Dispersive Fillers," Mekh. Komp. Mater. Konstr. 11 (3), 446-450 (2005) [J. Comp. Mech. Design (Engl. Transl.)].
25.  V. V. Moshev and S. E. Evlampieva, "Filler-Reinforcement of Elastomers Viewed as a Triboelastic Phenopmenon," Int. J. Solids Struct. 40 (17), 4549-4562 (2003).
26.  V. V. Moshev and S. E. Evlampieva, "Structural Modeling of Time-Dependence of Elastomers Filled with Nanoparticles," Mekh. Komp. Mater. Konstr. 13 (3), 400-407 (2007) [J. Comp. Mech. Design (Engl. Transl.)].
27.  V. V. Moshev and S. E. Evlampieva, "Role of Triboelasticity in Cyclic Behavior of Elastomeric Nanocomposites," Mekh. Komp. Mater. Konstr. 14 (4), 511-517 (2008) [J. Comp. Mech. Design (Engl. Transl.)].
28.  R. Dargazany and M. Itskov, "A Network Evolution Model for the Anisotropic Mullins Effect in Carbon Black Filled Rubbers," Int. J. Solids Struct. 46 (16), 2967-2977 (2009).
29.  S. Cantournet, R. Desmorat, and J. Besson, "Mullins Effect and Cyclic Stress Softening of Filled Elastomers by Internal Sliding and Friction Thermodynamics Model," Int. J. Solids Struct. 46 (11-12), 2255-2264 (2009).
30.  V. E. Zgaevskii and Yu. G. Yanovskii, "Dependence of Viscoelastic Properties of Composites with Highly Elastic Matrix and the Filler Rigid Particles on the Molecular and Structural Parameters of the Interface Layer," Mekh. Komp. Mater. Konstr. 4 (3), 124-135 (1998) [J. Comp. Mech. Design (Engl. Transl.)].
31.  V. E. Zgaevskii, Yu. G. Yanovskii, A. N. Vlasov et al., "Analysis of Elastic Properties of a Polymeric Composite in Accounting for Molecular and Structural Characteristics of Interphase Layer," Mekh. Komp. Mater. Konstr. 6 (1), 141-150 (2000) [J. Comp. Mech. Design (Engl. Transl.)].
32.  Yu. G. Yanovskii and V. E. Zgaevskii, "Hierarchic Modeling of Mechanical Behavior and Properties of Heterogeneous Media," Fizich. Mezomekh. 4 (3), 63-71 (2001) [Phys. Mesomech. (Engl. Transl.)].
33.  Yu. A. Gamlitsky and M. V. Shvachich, "Rubber Strength: Model and Calculation," Vysokomolekul. Soed. 47 (4), 660-668 (2005) [Polym. Sci. Ser. A (Engl. Transl.) 47 (4), 396-402 (2005)].
34.  Yu. G. Yanovskii, E. A. Nikitina, Yu. N. Karnet et al., "Molecular Modeling of Mesoscopic Composite Systems. Structure and Micromechanical Properties," Fiz. Mezomekhanika 8 (5), 61-75 (2005) [Phys. Mesomech. (Engl. Transl.)].
35.  Yu. G. Yanovskii, A. N. Vlasov, E. A. Nikitina, and Yu. N. Karnet, "Analysis of Theoretical Strength of Interphase Layers of Adsorption Complexes of Polymer Composite Media," Mekh. Komp. Mater. Konstr. 13 (1), 33-41 (2007) [J. Comp. Mech. Design (Engl. Transl.)].
36.  Yu. G. Yanovsky, F. V. Grigoryev, E. A. Nikitina, et al. "Nanomechanical Properties of Polymer Composite Nanoclusters," Fizich. Mezomekh. 11 (3), 61-74 (2008) [Phys. Mesomech. (Engl. Transl.) 11 (5-6), 247-259 (2008)].
Received 05 February 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100