Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-4pp.575-582

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
A.A. Zelenina and L.M. Zubov, "One-Dimensional Deformations of Nonlinearly Elastic Micropolar Bodies," Mech. Solids. 45 (4), 575-582 (2010)
Year 2010 Volume 45 Number 4 Pages 575-582
DOI 10.3103/S0025654410040072
Title One-Dimensional Deformations of Nonlinearly Elastic Micropolar Bodies
Author(s) A.A. Zelenina (South Federal University, Mil'chikova 8a, Rostov-on-Don, 344090 Russia, zelenina@math.rsu.ru)
L.M. Zubov (South Federal University, Mil'chikova 8a, Rostov-on-Don, 344090 Russia, zubov@math.rsu.ru)
Abstract We find families of finite deformations of a Cosserat elastic continuum on which the system of equilibrium equations is reduced to a system of ordinary differential equations. These families can be used to describe the expansion, tension, and torsion of a hollow circular cylinder, cylindrical bending of a rectangular slab, straightening of a circular arch, reversing of a cylindrical tube, formation of screw and wedge dislocations in a hollow cylinder, and other types of deformations. In the case of a physically nonlinear material model, the above-listed families of deformations can be used to construct exact solutions of several problems of strong bending of micropolar bodies.
References
1.  R. A. Toupin, "Theories of Elasticity with Couple-Stress," Arch. Ration. Mech. and Anal. 17 (2), 85-112 (1964).
2.  L. I. Shkutin, Mechanics of Deformations of Flexible Bodies (Nauka, Novosibirsk, 1997) [in Russian].
3.  L. M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies (Springer, Berlin, 1997).
4.  E. Nikitin and L. M. Zubov, "Conservation Laws and Conjugate Solutions in the Elasticity of Simple Materials and Materials with Couple Stress," J. Elasticity 51 (1), 1-22 (1998).
5.  L. M. Zubov and M. I. Karyakin, Tensor Calculus. Foundations of the Theory (Vuzovskaya Kniga, Moscow, 2006) [in Russian].
6.  A. E. Green and J. E. Adkins, Large Elastic Deformations and Non-Linear Continuum Mechanics (Clarendon Press, Osford, 1960; Mir, Moscow, 1965).
7.  L. M. Zubov, "A Semi-Inverse Method in Quasistatic Problems of Nonlinear Thermoviscoelasticity," Dokl. Akad. Nauk SSSR 256 (3), 556-559 (1981) [Soviet Phys. Dokl. (Engl. Transl.) 26, 111 (1981)].
8.  A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
9.  A. A. Zelenina, "Theory of Large-Strain Torsion of Prismatic Bodies with Moment Stresses," Zh. Prikl. Mekh. Tekh. Fiz. 47 (4), 167-175 (2006) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 47 (4), 600-607 (2006)].
Received 13 January 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100