Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-3pp.493-496

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
D.V. Georgievskii, "On Potential Isotropic Tensor Functions of Two Tensor Arguments in Mechanics of Solids," Mech. Solids. 45 (3), 493-496 (2010)
Year 2010 Volume 45 Number 3 Pages 493-496
DOI 10.3103/S0025654410030192
Title On Potential Isotropic Tensor Functions of Two Tensor Arguments in Mechanics of Solids
Author(s) D.V. Georgievskii (Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, 119992 Russia, georgiev@mech.math.msu.su)
Abstract In solid mechanics, the phenomenological description of processes that occur at micro- and nanolevel means that new material parameters modeling some characteristics of the object structure are introduced in the mathematical model and, first of all, in the constitutive relations. These parameters can be either of scalar or tensor nature.

In what follows, we discuss several properties of isotropic tensor functions in 3 and possibly in 2, encountered in solid mechanics, which depend on two tensor arguments and have a potential with respect to one of them. It is admissible that the second tensor argument can be the above-mentioned parameter characterizing the structure.
Keywords tensor function, potentiality, isotropy, invariant, quasilinearity
References
1.  R. S. Rivlin, "Further Remarks on the Stress - Deformation Relations for Isotropic Materials," J. Rational Mech. Anal. 4 (5), 681-702 (1955).
2.  V. V. Lokhin and L. I. Sedov, "Nonlinear Tensor Functions of Several Tensor Arguments," Prikl. Mat. Mekh. 27 (3), 393-417 (1963) [J. Appl. Math. Mech. 27 (3), 597-629 (1963)].
3.  A. J. M. Spenser, Continuum Physics, Vol. 1, Pt. III: Theory of Invariants (New York-London, 1971; Mir, Moscow, 1974).
4.  B. D. Annin, "Lagrange-Silvester Formula for a Tensor Function Depending on Two Tensors," Dokl. Akad. Nauk. SSSR 133 (4), 743-744 (1960)
5.  R. V. Goldstein and V. M. Entov, Qualitative Methods in Continuum Mechanics (Nauka, Moscow, 1989; Wiley, New York, 1994).
6.  B. E. Pobedrya and D. V. Georgievskii, Foundations of Continuum Mechanics, Lecture Course (Fizmatlit, Moscow, 2006) [in Russian].
7.  B. E. Pobedrya, Lectures on Tensor Analysis (Izd-vo MGU, Moscow, 1986) [in Russian].
8.  D. V. Georgievskii, "Tensor Nonlinear Effects under Isothermal Strain of Continua," Uspekhi Mekh. 1 (2), 150-176 (2002).
9.  Yu. I. Dimitrienko, Nonlinear Continuum Mechanics (Fizmatlit, Moscow, 2009) [in Russian].
10.  M. U. Nikabadze, Several Problems of Tensor Calculus (TsPI MGU, Moscow, 2007) [in Russian].
11.  M. Hanin and M. Reiner, "On Isotropic Tensor-Functions and the Measure of Deformation," ZAMP 7 (5), 377-393 (1956).
Received 11 January 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100