Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-3pp.331-342

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
H. Altenbach, V.A. Eremeev, and N.F. Morozov, "On Equations of the Linear Theory of Shells with Surface Stresses Taken into Account," Mech. Solids. 45 (3), 331-342 (2010)
Year 2010 Volume 45 Number 3 Pages 331-342
DOI 10.3103/S0025654410030040
Title On Equations of the Linear Theory of Shells with Surface Stresses Taken into Account
Author(s) H. Altenbach (Martin Luther University Halle-Wittenberg, Kurt-Mothes 1, Halle (Saale), 06099 Germany, holm.altenbach@iw.uni-halle.de)
V.A. Eremeev (South Federal University, Mil'chakova 8a, Rostov-on-Don, 344090 Russia, eremeyev.victor@gmail.com)
N.F. Morozov (St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia, morozov@nm1016.spb.edu)
Abstract We construct equations of equilibrium and constitutive relations of linear theory of plates and shells with transverse shear strain taken into account, which are based on reducing the spatial elasticity relations with surface stresses taken into account to two-dimensional equations given on the shell median surface. We analyze the influence of surface elasticity moduli on the effective stiffness of plates and shells.
Keywords surface stresses, shells, plates, effective stiffnesses, surface tension
References
1.  H. L. Duan, J. Wang, and B. L. Karihaloo, "Theory of Elasticity at the Nanoscale," Adv. Appl. Mech. 42, 1-63 (2008).
2.  L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Hydrodynamics (Nauka, Moscow, 1986) [in Russian].
3.  J. Wang, H. L. Duan, Z. P. Huang, and B. L. Karihaloo, "A Scaling Law for Properties of Nano-Structured Materials," Proc. Roy. Soc. London. Ser. A 462 (2069), 1355-1363 (2006).
4.  H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, "Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities with Interface Stress," J. Mech. Phys. Solids 53 (7), 1574-1596 (2005).
5.  S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten, "Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy," Phys. Rev. B 69 (16), 165410-5 (2004).
6.  G. Y. Jing, H. L. Duan, X. M. Sun, et al., "Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy," Phys. Rev. B 73 (23), 235409-6 (2006).
7.  C. Q. Chen, Y. Shi, Y. S. Zhang, et al., "Size Dependence of Young's Modulus in ZnO Nanowires," Phys. Rev. Lett. 96 (7), 075505-4 (2006).
8.  P. S. Laplace, Sur L'action Capillaire in Supplément au Traité de Mécanique Céleste, T. 4, Livre X (Gauthier-Villars, Paris, 1805).
9.  P. S. Laplace, À la Théorie de L'action Capillaire in Supplément au Traité de Mécanique Céleste, T. 4, Livre X (Gauthier-Villars, Paris, 1805).
10.  T. Young, "An Essay on the Cohesion of Fluids," Phil. Trans. Roy. Soc. London 95, 65-87 (1805).
11.  J. W. Gibbs, "On the Equilibrium of Heterogeneous Substances," in The Collected Works of J. Willard Gibbs (Longmans, Green, New York, 1928), pp. 55-353.
12.  E. Orowan, "Surface Energy and Surface Tension in Solids and Fluids," Proc. Roy. Soc. London. Ser. A 316 (1527), 473-491 (1970).
13.  Ya. S. Podstrigach and Yu. Z. Povstenko, Introduction to Mechanics of Surface Phenomena in Strained Rigid Bodies (Naukova Dumka, Kiev, 1985) [in Russian].
14.  R. Finn, Equilibrium Capillary Surfaces (Springer, New York, 1986; Mir, Moscow, 1989).
15.  A. I. Rusanov, "Thermodynamics of Solid Surfaces," Surf. Sci. Rep. 23 (6-8), 173-247 (1996).
16.  A. I. Rusanov, "Surface Thermodynamics Revisited," Surf. Sci. Rep. 58 (5-8), 111-239 (2005).
17.  M. E. Gurtin and A. I. Murdoch, "A Continuum Theory of Elastic Material Surfaces," Arch. Rational Mech. Anal. 57 (4), 291-323 (1975).
18.  M. E. Gurtin and A. I. Murdoch, "Addenda to Our Paper: A Continuum Theory of Elastic Material Surfaces," Arch. Rational Mech. Anal. 59 (4), 389-390 (1975).
19.  A. I. Murdoch, "A Thermodynamical Theory of Elastic Material Interfaces," Quart. J. Mech. Appl. Math. 29 (3), 245-274 (1976).
20.  P. Podio-Guidugli and G. V. Caffarelli, "Surface Interaction Potentials in Elasticity," Arch. Rational Mech. Anal. 109 (4), 343-383 (1990).
21.  Yu. Z. Povstenko, "Theoretical Investigation of Phenomena Caused by Heterogeneous Surface Tension in Solids," J. Mech. Phys. Solids 41 (9), 1499-1514 (1993).
22.  D. J. Steigmann and R. W. Ogden, "Elastic Surface-Substrate Interactions," Proc. Roy. Soc. London. Ser. A 455 (1982), 437-474 (1999).
23.  V. A. Eremeev and L. M. Zubov, Mechanics of Elastic Shells (Nauka, Moscow, 2008) [in Russian].
24.  P. Lu, L. H. He, H. P. Lee, and C. Lu, "Thin Plate Theory Including Surface Effects," Int. J. Solids Struct. 43 (16), 4631-4647 (2006).
25.  Y. J. Shi, W. L. Guo, and C. Q. Ru, "Relevance of Timoshenko-Beam Model to Microtubules of Low Shear Modulus," Phys. E: Low-Dimens. Syst. Nanostruct. 41 (2), 213-219 (2008).
26.  D. W. Huang, "Size-Dependent Response of Ultra-Thin Films with Surface Effects," Int. J. Solids Struct. 45 (2), 568-579 (2008).
27.  J. Peng, J. Wu, K. C. Hwang, et al., "Can a Single-Wall Carbon Nanotube be Modeled as a Thin Shell?" J. Mech. Phys. Solids 56 (6), 2213-2224 (2008).
28.  K. Dahmen, S. Lehwald, and H. Ibach, "Bending of Crystalline Plates under the Influence of Surface Stress - a Finite Element Analysis," Surf. Sci. 446 (1-2), 161-173 (2000).
29.  R. E. Miller and V. B. Shenoy, "Size-Dependent Elastic Properties of Nanosized Structural Elements," Nanotech. 11 (3), 139-147 (2000).
30.  J. G. Guo and Y. P. Zhao, "The Size-Dependent Elastic Properties of Nanofilms with Surface Effects," J. Appl. Phys. 98 (7), 074306-11 (2005).
31.  C. F. Lu, C. W. Lim, and W. Q. Chen, "Size-Dependent Elastic Behavior of FGM Ultra-Thin Films Based on Generalized Refined Theory," Int. J. Solids Struct. 46 (5), 1176-1185 (2009).
32.  V. A. Eremeyev, H. Altenbach, and N. F. Morozov, "The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates," Dokl. Ross. Akad. Nauk 424 (5), 618-621 (2009) [Dokl. Phys. (Engl. Transl.) 54 (2), 98-100 (2009)].
33.  H. Altenbach and P. A. Zhilin, "General Theory of Elastic Simple Shells," Uspekhi Mekh. 11 (4), 107-148 (1988).
34.  H. Altenbach, "An Alternative Determination of Transverse Shear Stiffness for Sandwich and Laminated Plates," Int. J. Solids Struct. 37 (25), 3503-3520 (2000).
35.  P. A. Zhilin, Applied Mechanics. Foundations of Shell Theory (Izd-vo Polytechn. Univ., St. Petersburg, 2006) [in Russian].
36.  H. Altenbach and V. A. Eremeyev, "Direct Approach Based Analysis of Plates Composed of Functionally Graded Materials," Arch. Appl. Mech. 78 (10), 775-794 (2008).
37.  L. M. Zubov, Methods of Nonlinear Elasticity in Shell Theory (Izd-vo RGU, Rostov-on-Don, 1982) [in Russian].
38.  S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw Hill, New York, 1959; Fizmatgiz, Moscow, 1963).
39.  A. L. Goldenveizer, Theory of Thin Elastic Shells (Nauka, Moscow, 1976) [in Russian].
40.  V. V. Novozhilov, K. F. Chernykh, and E. I. Mikhailovskii, The Linear Theory of Thin Shells (Politekhnika, Leningrad, 1991) [in Russian].
41.  L. P. Lebedev, M. J. Cloud, and V. A. Eremeyev, Tensor Analysis with Applications in Mechanics (World Scientific, Singapore, 2010).
42.  E. B. Wilson, Vector Analysis, Founded upon the Lectures of J. W. Gibbs (Yale Univ. Press, New Haven, 1901).
43.  P. A. Zhilin, Vector and Second-Rank Tensors in Three-Dimensional Space (Nestor, St. Petersburg, 2001) [in Russian].
44.  L. M. Zubov and M. I. Karyakin, Tensor Calculus. Foundations of the Theory (Vuzovskaya Kniga, Moscow, 2006) [in Russian].
45.  E. I. Grigolyuk and I. T. Selezov, Nonclassical Theories of Rod, Plate, and Shell Vibrations in Results in Science and Technology. Mechanics of Deformable Solids, Vol. 5 (VINITI, Moscow, 1973) [in Russian].
46.  E. I. Grigolyuk and P. P. Chulkov, Stability and Vibrations of Three-Layer Shells (Mashinostroenie, Moscow, 1973) [in Russian].
47.  H. Altenbach, J. Altenbach, and W. Kissing, Mechanics of Composite Structural Elements (Springer, Berlin, 2004).
48.  R. Szilard, Theories and Applications of Plate Analysis. Classical, Numerical, and Engineering Methods (Wiley, Hoboken, New Jersey, 2004).
49.  C. M. Wang, J. N. Reddy, and K. H. Lee, Shear Deformable Beams and Shells (Elsevier, Amsterdam, 2000).
50.  H. Altenbach and V. A. Eremeyev, "Eigen-Vibrations of Plates Made of Functionally Graded Material," CMC 9 (2), 153-178 (2009).
51.  J. Chróścielewski, J. Makowski, and W. Pietraszkiewicz, Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method (Wydawnictwo IPPT PAN, Warsaw, 2004) [in Polish].
52.  A. Libai and J. G. Simmonds, The Nonlinear Theory of Elastic Shells (Cambridge Univ. Press, Cambridge, 1998).
53.  W. Pietraszkiewicz, Finite Rotations and Lagrangian Description in the Nonlinear Theory of Shells (Polish Sci. Publ., Warsaw-Poznan, 1979).
54.  P. M. Naghdi, "The Theory of Shells and Plates," in Handbuch der Physik, Vol. 2, Ed. by S. Flügge (Berlin, 1972), pp. 425-640.
55.  M. B. Rubin, Cosserat Theories: Shells, Rods, and Points (Kluwer, Dordrecht, 2000).
Received 21 August 2009
Link to Fulltext
<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100