Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-3pp.312-323

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
R.V. Goldstein, V.A. Gorodtsov, and P.S. Shushpannikov, "Simulation of Stress-Strain State in SiGe Island Heterostructures," Mech. Solids. 45 (3), 312-323 (2010)
Year 2010 Volume 45 Number 3 Pages 312-323
DOI 10.3103/S0025654410030027
Title Simulation of Stress-Strain State in SiGe Island Heterostructures
Author(s) R.V. Goldstein (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, goldst@ipmnet.ru)
V.A. Gorodtsov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, gorod@ipmnet.ru)
P.S. Shushpannikov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, shushpan@ipmnet.ru)
Abstract The problem of simulation of the stress-strain state in SiGe island heterostructures is considered. The analytic-numerical method of multipole expansions is used to obtain an approximate solution. The problem of the stressed state influence on the diffusion mobility of atoms adsorbed on the heterostructure free surface is also discussed.
Keywords island heterostructures,"quantum dots," multipole expansion method
References
1.  K. A. Valiev, R. V. Goldstein, and T. M. Makhviladze, "Certain Problems of Strength and Fracture of Micro- and Submicroelectronics Components," Tr. FTIAN 18, 379-397 (2005).
2.  G. Abstreiter, H. Brugger, T. Wolf, et al., "Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixSi1−x Superlattices," Phys. Rev. Lett. 54 (22), 2441-1444 (1985).
3.  F. Schaffler, "High-Mobility Si and Ge Structures," Semicond. Sci. Technol. 12 (12), 1515-1549 (1997).
4.  Y.-J. Yang, W. S. Ho, C.-F. Huang, et al., "Electron Mobility Enhancement in Strained-Germanium n-Channel Metal-Oxide Semiconductor Field-Effect Transistors," Appl. Phys. Lett. 91 (10), 102103 (2007).
5.  S. Orein, V. Fiori, D. Villanueva, et al., "Method for Managing the Stress due to the Strained Nitride Capping Layer in MOS Transistors," IEEE Trans. Elect. Devices 54 (4), 814-821 (2007).
6.  K. Brunner, "Si/Ge Nanostructures," Reg. Prog. Phys. 65 (1), 27-72 (2002).
7.  N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., "Quantum dot Heterostructures: Fabrication, Properties, Lasers (Review)," Fiz. Tekhn. Poluprov. 32 (4), 385-410 (1998) [Semicond. (Engl. Transl.) 32 (4), 343-365 (1998)].
8.  A. D. Stiff-Roberts, "Quantum-Dot Infrared Photodetectors: A Review," J. Nanophoton 3, 031607 (2009).
9.  R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, et al., "Improved Device Performance of InAs/GaAs Quantum Dot Solar Cells with GaP Strain Compensation Layer," Appl. Phys. Lett. 91 (24), 243115 (2007).
10.  J. Sabarinathan, P. Bhattacharya, P.-C. Yu, et al., "An Electrically Injected InAs/GaAs Quantum-Dot Photonic Crystal Microcavity Light-Emitting Diode," Appl. Phys. Lett. 81 (20), 3876-3878 (2002).
11.  H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, and P. M. Petroff, "Spectroscopy of Quantum Levels in Charge-Tunable InGaAs Quantum Dots," Phys. Rev. Lett. 73 (16), 2252-2255 (1994).
12.  V. G. Dubrovskii, Theory of Epitaxial Nanosturcture Formation (Fizmatlit, Moscow, 2009) [in Russian].
13.  X. L. Li and G. W. Yang, "Thermodynamic Theory of Shape Evolution Induced by Si Capping in Ge Quantum Dot Self-Assembly," J. Appl. Phys. 105 (1), 013510 (2009).
14.  S. Kiravittaya, A. Rastelli, and O. G. Schmidt, "Advanced Quantum Dot Configuration," Rep. Prog. Phys. 72, 046502 (2009).
15.  M. F. Doerner and W. D. Nix, "Stresses and Deformation Processes in Thin Films on Substrates," Critical Rev. Solid State Mater. Sci. 14 (3), 225-268 (1988).
16.  M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, et al., "Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors," J. Appl. Phys. 97 (1), 011101 (2005).
17.  M. H. Liao, S. T. Chang, M. H. Lee, et al., "Abnormal Hole Mobility of Biaxial Strained Si," J. Appl. Phys. 98 (6), 066104 (2005).
18.  J. Stangl, V. Holy, and G. Bauer, "Structural Properties of Self-Organized Semiconductor Nanostructures," Rev. Mod. Phys. 76 (3), 725-783 (2004).
19.  R. V. Goldstein, V. A. Gorodtsov, A. V. Chentsov, et al., Surface and Strain Effects on Nanoscale Layered Solids. Part 1: Three-Layered Heterostructures. Quantum Dots under Capping Layer, Preprint No. 846 (Taipei, IPMech. RAS, Moscow, 2007) [in Russian].
20.  R. V. Goldstein, V. A. Gorodtsov, A. V. Chentsov, et al., "Stress-Strain State in Pseudomorphous and Relaxed Heterostructures," Inzh. Fiz., No. 5, 44-46 (2009).
21.  R. V. Goldstein, V. A. Gorodtsov, and P. S. Shushpannikov, "On Modeling the Mechanical Behavior of Heterostructures with Quantum Dots"," Izv. Vyssh. Uchebn. Zaved. Fiz., No. 11, 58-66 (2009) [Rus. Phys. J. (Engl. Transl.) 52 (11), 1177-1185 (2009)]
22.  A. Rastelli, M. Kummer, and H. von Kanel, "Reversible Shape Evolution of Ge Islands on Si(001)," Phys. Rev. Lett. 87, 256101 (2001).
23.  G. Katsaros, M. Stoffel, A. Rastelli, et al., "Three-Dimensional Isocompositional Profiles of Buried SiGe/Si(001) Islands," Appl. Phys. Lett. 91 (1), 013112 (2007).
24.  J. M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, et al., "Intermixing and Shape Changes during the Formation of InAs Self-Assembled Quantum Dots," Appl. Phys. Lett. 71 (14), 2014-2016 (1997).
25.  J. Cui, Q. He, X. M. Jiang, and Y. L. Fan, "Self-Assembled SiGe Quantum Rings Grown on Si(001) by Molecular Beam Epitaxy", Appl. Phys. Lett. 83 (14), 2907-2909 (2003).
26.  S. W. Lee, L. J. Chen, P. S. Chen, et al., "Self Assembled Nanorings in Si-Capped Ge Quantum Dots on (001)Si," Appl. Phys. Lett. 83 (25), 5283-5285 (2003).
27.  C.-H. Lee, C. M. Lin, C. W. Liu, et al., "SiGe Quantum Rings by Ultra-High Vacuum Chemical Vapor Deposition," ECS Trans. 16, 647-657 (2008).
28.  C.-H. Lee, Y.-Y. Shen, C. W. Liu, et al., "SiGe Nanorings by Ultrahigh Vacuum Chemical Vapor Deposition," Appl. Phys. Lett. 94 (14), 141909 (2009).
29.  A. Lorke, R. J. Luyken, A. O. Govorov, and J. P. Kotthaus, "Spectroscopy of Nanoscopic Semiconductor Rings," Phys. Rev. Lett. 84, 2223-2226 (2000).
30.  R. J. Warburton, C. Schulhauser, D. Haft, et al., "Giant Permanent Dipole Moments of Excitonts in Semiconductor Nanostructures," Phys. Lett. B. 65, 113303 (2009).
31.  A. Lorke, R. J. Luyken, J. M. Garcia, and P. M. Petroff, "Growth and Electronic Properties of Self-Organized Quantum Rings," Japan J. Appl. Phys. 40, 1857-1859 (2001).
32.  D. Granados and J. M. Garcia, "In(Ga)As Self-Assembled Quantum Rings Formation by Molecular Beam Epitaxy," Appl. Phys. Lett. 82 (15), 2401-2403 (2003).
33.  L. Huang, F. Liu, G.-H. Lu, and X. G. Gong, "Surface Mobility Difference between Si and Ge and Its Effect on Growth of SiGe Alloy Films and Islands," Phys. Rev. Lett. 96 (1), 016103 (2006).
34.  R. V. Goldstein, V. A. Gorodtsov, P. S. Shushpannikov, et al., Surface and Strain Effects on Nanoscale Layered Solid. Part III: The Nanosize SiGe Islands on Si(001) and Si(110) Substrates. The Mechanical Behavior of the Modern MOSFETs, Preprint No. 913 (IPMech. RAS, Moscow, Taipei, 2009) [in Russian].
35.  F. Jonsdottir, D. Halldorsson, G. E. Beltz, and A. E. Romanov, "Elastic Fields and Energies of Coherent Surface Islands," Modelling Simul. Mater. Sci. Engng 14 (7), 1167-1180 (2006).
36.  C.-H. Lee, Y.-Y. Shen, Y. Y. Chen, et al., "SiGe Quantum Dots and Quantum Rings on Si(110) by Ultra-High Vacuum Chemical Vapor Deposition," in Extended Abstracts of ICSI-6; 6th Int. Confer. on Silicon Epitaxy and Heterostructures (2009), p. 43.
37.  L. B. Freund and S. Suresh, Thin Film Materials. Stress, Defect Formation and Evolution (Cambridge Univ. Press, Cambridge, 2003).
38.  E. R. Johnson and S. M. Christian, "Some Properties of Germanium-Silicon Alloys," Phys. Rev. 95 (2), 560-561 (1954).
39.  G. G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis," Proc. Roy. Soc. London. Ser. A 82 (553), 172-175 (1909).
40.  S. P. Timoshenko, "Analysis of Bi-Metal Thermostats," J. Opt. Soc. Am. 11 (9), 233-255 (1925).
41.  A. L. Kolesnikova and A. E. Romanov, "Generation of Dislocation Loops in Strained Quantum Dots Embedded in a Heterolayer," Fiz. Tverd. Tela 46 (9), 1593-1596 (2004) [Phys. Solid State (Engl. Transl.) 46 (9), 1644-1648 (2004)].
42.  R. V. Goldstein and E. I. Shifrin, Plane Problem of Stressed State Determined by Phase Transitions in Elliptic Region Preprint No. 714 (IPMekh RAN, Moscow, 2003) [in Russian].
43.  T. Mura, Micromechanics of Defects in Solids (Nijhoff Publ., Dordrecht, 1987).
44.  G. S. Pearson and D. A. Faux, "Analytical Solution for Strain in Pyramidal Quantum Dots," J. Appl. Phys. 88 (2), 730-736 (2000).
45.  F. Glas, "Elastic Relaxation of Truncated Pyramidal Quantum Dots and Quantum Wires in a Half Space: An Analytical Calculation," J. Appl. Phys. 90 (7), 3232-3241 (2001).
46.  R. V. Goldstein and P. S. Shushpannikov, "Application of the Method of Multipole Expansions in 3D-Elasticity Problem for a Medium with Ordered System of Spherical Pores," ZAMM 89 (6), 504-510 (2009).
47.  K. L. Johnson, Contact Mechanics (Univ. Press, Cambridge, 1987; Mir, Moscow, 1989).
48.  H. Hahn, Theory of Elasticity: Foundations of Linear Theory and Its Applications (Mir, Moscow, 1988) [in Russian].
49.  R. V. Goldstein, V. A. Gorodtsov, P. S. Shushpannikov, et al., Surface and Strain Effects on Nanoscale Layered Solid, Part II: Mechanical Modeling of Quantum Dots. Analytical and Numerical Approaches, Preprint No. 871 (IPMekh RAN, Moscow, 2008) [in Russian].
50.  O. Anderson, "Determining and Several Applications of Isotropic Elastic Constant Polycrystal Systems Obtained from Data for Monocrystals," in W. Mason (Editor), Physical Acoustics, Vol. 3, Part B: Lattice Dynamics (Mir, Moscow, 1968), pp. 62-121 [in Russian].
51.  D. J. Shu, F. Liu, and X. G. Gong, "Simple Generic Method for Predicting the Effect of Strain on Surface Diffusion," Phys. Rev. B 64 (24), 245410 (2001).
52.  P. Muller and A. Saul, "Elastic Effects on Surface Physics," Surf. Sci. Rep. 54 (5-8), 157-258 (2004).
Received 01 February 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100