Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-2pp.295-308

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 45, Issue 2 / 2010 | Next article >>
V.A. Kovalev and Yu.N. Radaev, "Three-Dimensional Constitutive Relations of Ideal Plasticity and the Flow on the Coulomb-Tresca Prism Edge," Mech. Solids. 45 (2), 295-308 (2010)
Year 2010 Volume 45 Number 2 Pages 295-308
DOI 10.3103/S0025654410020159
Title Three-Dimensional Constitutive Relations of Ideal Plasticity and the Flow on the Coulomb-Tresca Prism Edge
Author(s) V.A. Kovalev (Moscow City Government University of Management, Sretenka 28, Moscow, 107045 Russia, vlad_koval@mail.ru)
Yu.N. Radaev (Samara State University, Akad. Pavlova 1, Samara, 443011 Russia, radayev@ssu.samara.ru)
Abstract In the present paper, we consider basic relations of the mathematical theory of plasticity for the spatial state corresponding to the edge of the Coulomb-Tresca prism, which follow from the generalized associated flow law restricting the plastic flow freedom for the above states to the minimal possible extent. We found that the spatial relations of the theory of plasticity, formulated by A. Yu. Ishlinsky in 1946, can be derived from the above version of the theory of flow. We show that the A. Yu. Ishlinsky constitutive relations for states on the Coulomb-Tresca prism edge express the commutativity of the stress tensor and the tensor of plastic strain increments. We obtained one explicit form of the constitutive relation relating the stress tensor to the plastic strain increments for the stressed states corresponding to the Coulomb-Tresca prism edge.
Keywords constitutive equation, flow law, stress tensor, strain increment, three-term formula
References
1.  A. Haar and T. Karman, "To Theory of Stressed States in Plastic and Granular Materials," in Plasticity Theory (Izd-vo Inostr. Lit., Moscow, 1948), pp. 41-56 [in Russian].
2.  A. Yu. Ishlinsky, "Axially Symmetric Problem of Plasticity and Brinell's Hardness Test," Prikl. Mat. Mekh. 8 (3), 201-224 (1944).
3.  R. Hill, The Mathematical Theory of Plasticity (Clarendon, Oxford, 1950; Gostekhizdat, Moscow, 1956).
4.  A. Yu. Ishlinsky, "On Equations of Body Deformation beyond the Limit of Elasticity," Uchen. Zap. MGU. Mekh. 1 (117), 90-108 (1946).
5.  M. Levy, "To the Problem of General Equations of Internal Motions Arising in Rigid Plastic Bodies beyond the Limit of Elasticity," in Plasticity Theory (Izd-vo Inostr. Lit., Moscow, 1948), pp. 20-23 [in Russian].
6.  B. de Saint-Venant, "Sur L'éstablissement des Équations des Mouvements Intérieurs Opérés Dans les Corps Solides Ductiles au Delá des Limites ou L'élasticité Portrait les Ramener á Leur Premier État," C. R. Acad. Sci. 70, 473-480 (1870).
7.  B. de Saint-Venant, "Sur L'éstablissement des Équations Differéntielles des Mouvements Intérieurs Opérés Dans les Corps Solides Ductiles au Delá des Limites ou L'élasticité Portrait les Ramener á Leur Premier État," Liouville J. Math. Pures et Appl. Ser. II 16, 308-316; 373-382 (1871).
8.  D. D. Ivlev, "On the General Equations of the Theory of Ideal Plasticity and of Statics of Granular [Pulverulent] Media," Prikl. Mat. Mekh. 22 (1), 90-96 (1958) [J. Appl. Math. Mech. (Engl. Transl.) 22 (1), 119-128 (1958)].
9.  D. D. Ivlev, "On Relations Determining the Plastic Flow under the Tresca Plasticity Condition and Its Generalizations," Dokl. Akad. Nauk SSSR 124 (3), 546-549 (1959) [Soviet Math. Dokl. (Engl. Transl.)].
10.  Yu. N. Radaev, Spatial Problem of Mathematical Theory of Plasticity (Izd-vo Samar. Univ., Samara, 2006) [in Russian].
11.  Yu. N. Radaev, "On the Ishlinsky Commutative Equations in the Mathematical Theory of Plasticity," Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser., No. 6(56), 102-114 (2007).
12.  L. M. Kachanov, Foundations of the Theory of Plasticity (Nauka, Moscow, 1969; North-Holland, Amsterdam, 1971).
13.  D. D. Ivlev, Theory of Ideal Plasticity (Nauka, Moscow, 1966) [in Russian].
14.  A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
15.  W. T. Koiter, "Stress-Strain Relations, Uniqueness, and Variational Theorems for Elastic-Plastic Materials with a Singular Yield Surface," Quart. Appl. Math. 11 (3), 350-354 (1953).
16.  V. V. Sokolovskii, The Theory of Plasticity (Gostekhteoretisdzt, Moscow-Leningrad, 1950) [in Russian].
17.  A. Yu. Ishlinsky, Applied Problems of Mechanics. Vol. 1: Mechanics of Viscoplastic and Incompletely Elastic Bodies (Nauka, Moscow, 1986) [in Russian].
18.  V. V. Novozhilov, Theory of Elasticity (Sudpromgiz, Leningrad, 1958) [in Russian].
19.  V. V. Novozhilov, Problems of Continuum Mechanics (Sudostroenie, Leningrad, 1989) [in Russian].
Received 13 October 2008
Link to Fulltext
<< Previous article | Volume 45, Issue 2 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100