Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-6pp.927-934

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 44, Issue 6 / 2009 | Next article >>
A. A. Pan’kov, "Asymptotic Solutions by the Successive Disordering Method," Mech. Solids. 44 (6), 927-934 (2009)
Year 2009 Volume 44 Number 6 Pages 927-934
DOI 10.3103/S0025654409060107
Title Asymptotic Solutions by the Successive Disordering Method
Author(s) A. A. Pan’kov (Perm State Technical University, Komsomolsky pr-t 29, Perm, 614600 Russia, pankov@mkmk.pstu.ac.ru)
Abstract We develop the periodic component method [1] and represent the solution of a stochastic boundary value elasticity problem for a random quasiperiodic structure with a given disordering degree of inclusions in the matrix via the deviations from the corresponding solution for a random structure with a smaller disordering degree. An example in which the tensor of elastic properties of a composite is calculated is used to illustrate the asymptotic and differential approaches of the successive disordering method. The asymptotic approach permits representing the quasiperiodic structure with a given chaos coefficient and the desired tensor of effective elastic properties as a result of small successive disordering of an originally ideally periodic structure of a composite with known tensor of elastic properties. In the differential approach, a differential equation is obtained for the tensor of effective elastic properties as a function of the chaos coefficient. Its solution coincides with the solution provided by the asymptotic approach. The solution is generalized to the case of piezoactive composites, and a numerical analysis of the effective properties is performed for a PVF (polyvinylidene fluoride) piezoelectric with various quasiperiodic structures on the basis of the cubic structure with spherical inclusions of a high-module elastic material.
Keywords composite, boundary value elasticity problem, effective properties of a composite, quasiperiodic structures
References
1.  Yu. C. Sokolkin and A. A. Tashkinov, Mechanics of Deformation and Failure of Structurally Inhomogeneous Solids (Nauka, Moscow, 1984) [in Russian].
2.  V. A. Lomakin, Statistical Problems of the Mechanics of Deformable Solids (Nauka, Moscow, 1970) [in Russian].
3.  T. D. Shermergor, Theory of Elasticity of Micro-Inhomogeneous Media (Nauka, Moscow, 1977) [in Russian].
4.  B. E. Pobedrya, Mechanics of Composite Materials (Izd-vo MGU, Moscow, 1984) [in Russian].
5.  A. A. Pan'kov and A. A. Tashkinov, "Singular Approximation of the Method of Periodic Components for Quasiperiodic Composite Materials," in Deformation and Fracture of Structure-Inhomogeneous Materials (UrO AN SSSR, Sverdlovsk, 1992), pp. 93-101 [in Russian].
6.  Yu. V. Sokolkin and A. A. Pan'kov, Electroelasticity of Piezocomposites with Irregular Structures (Fizmatlit, Moscow, 2003) [in Russian].
7.  A. A. Pan'kov and Yu. C. Sokolkin, "A Solution to a Boundary Value Problem of Electro-Elasticity for Piezo-Active Composites Based on the Method of Periodic Components," Mekh. Komp. Mater. Konstr. 8 (3), 365-384 (2002) [J. Comp. Mech. Design (Engl. Transl.)].
8.  A. A. Pan'kov and Yu. C. Sokolkin, "Influence of Geometry of Ellipsoidal Pours on the Properties of Piezo-Ceramics and on the Distribution of Fields of Deformation," Mekh. Komp. Mater. Konstr. 9 (1), 87-95 (2003) [J. Comp. Mech. Design (Engl. Transl.)].
9.  W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, New York, 1950; Izd-vo Inostr. Lit., Moscow, 1952).
10.  V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Electrically Conducting Solids (Nauka, Moscow, 1988) [in Russian].
11.  L. P. Khoroshun, B. P. Maslov, and P. V. Leshchenko, Prediction of Effective Properties of Piezoactive Composite Materials (Naukova Dumka, Kiev, 1989) [in Russian].
Received 30 October 2007
Link to Fulltext
<< Previous article | Volume 44, Issue 6 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100