Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-3pp.435-444

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 44, Issue 3 / 2009 | Next article >>
S. N. Timergaliev, "Solvability of boundary value problems in the geometrically and physically nonlinear theory of shallow shells of Timoshenko type," Mech. Solids. 44 (3), 435-444 (2009)
Year 2009 Volume 44 Number 3 Pages 435-444
DOI 10.3103/S0025654409030121
Title Solvability of boundary value problems in the geometrically and physically nonlinear theory of shallow shells of Timoshenko type
Author(s) S. N. Timergaliev (Kama State Academy of Engineering and Economics, pr-t Mira 68/19, Naberezhnye Chelny, Tatarstan, 423810, Russia, Samat_tim@mail.ru)
Abstract This paper deals with the proof of the existence of solutions of a geometrically and physically nonlinear boundary value problem for shallow Timoshenko shells with the transverse shear strains taken into account. The shell edge is assumed to be partly fixed. It is proposed to study the problem by a variational method based on searching the points of minimum of the total energy functional for the shell-load system in the space of generalized displacements. We show that there exists a generalized solution of the problem on which the total energy functional attains its minimum on a weakly closed subset of the space of generalized displacements.
References
1.  I.I. Vorovich, Mathematical Problems of Nonlinear Theory of Shallow Shells (Nauka, Moscow, 1989) [in Russian].
2.  N.F. Morozov, "To Nonlinear Theory of Thin Shells," Dokl. Akad. Nauk SSSR 114 (5), 968-971 (1957).
3.  M.M. Karchevskii, "Nonlinear Problems of Theory of Plates and Shells and Their Grid Approximations," Izv. Vyssh. Uchebn. Zaved. Mat., No. 10, 17-30 (1985) [Soviet Math. (Iz VUZ) (Engl. Transl.)].
4.  I.G. Teregulov and S.N. Timergaliev, "On the Existence of a Solution of a Problem in Nonlinear Theory of Shallow Shells," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 21-29 (1998) [Mech. Solids (Engl. Transl.) 33 (3), 15-21 (1998)].
5.  I.G. Teregulov and S.N. Timergaliev, "Ritz Method for Approximate Solution of Boundary Value Problems in the Nonlinear Theory of Thin Shells," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 154-164 (2002) [Mech. Solids (Engl. Transl.) 37 (1), 129-137 (2002)].
6.  K.Z. Galimov, Foundations of Nonlinear Theory of Thin Shells (Izd-vo Kazan Univ., Kazan, 1975) [in Russian].
7.  K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon Press, New York, 1972; Mir, Moscow, 1987).
8.  A.I. Lurie, The Theory of Elasticity (Nauka, Moscow, 1970) [in Russian].
9.  M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations (Gostekhizdat, Moscow, 1956; Pergamon, London, 1964; Macmillan, New York, 1964).
10.  M.M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations (Nauka, Moscow, 1972; Wiley, New York, 1973).
11.  L.V. Kantorovich and G.P. Akilov, Approximate Methods of Higher Analysis (Gostekhizdat, Leningrad-Moscow, 1949) [in Russian].
12.  I.N. Vekua, Generalized Analytic Functions (Nauka, Moscow, 1988) [in Russian].
13.  Mathematical Encyclopaedia, Vol. 3 (Idz-vo "Sov. Entsiklopedia", Moscow, 1982) [in Russian].
14.  O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer, New York, 1985).
Received 13 July 2006
Link to Fulltext
<< Previous article | Volume 44, Issue 3 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100