Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2008-5pp.751-755

Archive of Issues

Total articles in the database: 12804
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4760

<< Previous article | Volume 43, Issue 5 / 2008 | Next article >>
S. E. Aleksandrov and E. A. Lyamina, "Strain rate intensity factors for a plastic mass flow between two conical surfaces," Mech. Solids. 43 (5), 751-755 (2008)
Year 2008 Volume 43 Number 5 Pages 751-755
DOI 10.3103/S0025654408050099
Title Strain rate intensity factors for a plastic mass flow between two conical surfaces
Author(s) S. E. Aleksandrov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia, sergei_alexandrov@yahoo.com)
E. A. Lyamina (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia, lyamina@mail.northnet.ru)
Abstract The concept of strain rate intensity factor was introduced in [1], where the asymptotic expansion of the velocity field in a perfectly rigid-plastic material was obtained near the maximum friction surface, which is determined by the condition that the specific friction forces on this surface are equal to the simple shear yield strength. In particular, it was shown in this paper that near the maximum friction surface the equivalent strain rate (the second invariant of the strain rate tensor) tends to infinity inversely proportional to the square root of the distance to this surface. We note that the same result was obtained in the case of plane flow in [2]. The strain rate intensity factor is defined to be the coefficient of the leading singular number in the series expansion of the equivalent strain rate near the maximum friction surface. It was shown in [3] that there is a sufficiently complete formal analogy between the strain rate intensity factor and the stress intensity factor in mechanics of cracks [4]. In [5], it was suggested to use the concept of strain rate intensity factor to estimate the thickness of the layer near the friction surface where one should take into account viscosity effects. (Thus, this is an intensive strain layer formed as a result of a very large equivalent strain rate.) Therefore, the problem of calculating the strain rate intensity factor in specific processes is topical in the development of the general concept based on the use of the strain rate intensity factor and its applications in the theory of metal forming processes. These factors have already been calculated for several processes such as plane upsetting and drawing [3]. In the present paper, we calculate the distribution of the strain rate intensity factor in a plastic mass flow through an infinite converging channel formed by two conical surfaces on which the law of maximum friction acts (Fig. 1). A specific characteristic of this problem is the existence of two maximum friction surfaces and, accordingly, two distributions of the strain rate intensity factor. Since, according to the theory [5], the strain rate intensity factor is related to the thickness of the intensive strain layer near the friction surface, the solution of this problem may serve as a starting point for experimental confirmations of the theory. Note that the intensive strain layer thickness can be determined experimentally without any difficulties [6, 7] and the flow in an infinite channel of the shape under study can successfully model the tube drawing process [8].
Received 12 December 2005
Link to Fulltext
<< Previous article | Volume 43, Issue 5 / 2008 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100