Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-3pp.356-366

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 42, Issue 3 / 2007 | Next article >>
R. V. Goldstein and E. I. Shifrin, "Possible instability of a rectilinear crack path in an orthotropic plane at uniaxial normal tension," Mech. Solids. 42 (3), 356-366 (2007)
Year 2007 Volume 42 Number 3 Pages 356-366
Title Possible instability of a rectilinear crack path in an orthotropic plane at uniaxial normal tension
Author(s) R. V. Goldstein (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia, goldst@ipmnet.ru)
E. I. Shifrin (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia, shifrin@ipmnet.ru)
Abstract We study the stability of the rectilinear path of a mode I crack whose direction coincides with a symmetry axis of an orthotropic plane. A class of orthotropic materials for which the rectilinear crack path proves to be unstable even in the case of uniaxial normal tension applied at infinity is found.
References
1.  B. Cotterel and J. R. Rice, "Slightly Curved or Kinked Cracks," Int. J. Fract. 16 (2), 155-169 (1980).
2.  R. V. Goldstein and R. L. Salganik, "The Plane Problem on Curved Cracks in Elastic Body," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 3, 69-82 (1970) [Mech. Solids (Engl. Transl.)].
3.  R. V. Goldstein and R. L. Salganik, "Brittle Fracture of Bodies with Arbitrary Cracks," in Advances in Mechanics of Solids (Nauka, Moscow, 1975), pp. 156-171 [in Russian].
4.  N. V. Banichuk, "Determination of the Shape of a Curved Crack by the Small-Parameter Method," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 2, 130-137 (1970) [Mech. Solids (Engl. Transl.)].
5.  Y. Sumi, S. Nemat-Nasser, and L. M. Keer, "On Crack Path Stability in a Finite Body," Engng. Fract. Mech. 22 (5), 759-771 (1985).
6.  J. B. Leblond, "Crack Paths in Plane Situations - I. General Form of the Expansion of the Stress Intensity Factors," Int. J. Solids Struct. 25 (11), 1311-1325 (1989).
7.  M. Amestoy and J. B. Leblond, "Crack Paths in Plane Situations - II. Detailed Form of the Expansion of the Stress Intensity Factors," Int. J. Solids Struct. 29 (4), 465-501 (1992).
8.  P. A. Martin, "Perturbed Cracks in Two Dimensions: An Integral-Equation Approach," Int. J. Fract. 104 (3), 317-327 (2000).
9.  S. Melin, "The Influence of the T-Stress on the Directional Stability of Cracks," Int. J. Fract. 114 (3), 259-265 (2002).
10.  D. Leguillon, "Asymptotic and Numerical Analysis of a Crack Branching in Non-Isotropic Materials," Eur. J. Mech., A/Solids 12 (1), 33-51 (1993).
11.  H. Gao, Cheng-hsin Chiu, "Slightly Curved or Kinked Cracks in Anisotropic Elastic Solids," Int. J. Solids Struct. 29 (8), 947-972 (1992).
12.  R. V. Goldstein and E. I. Shifrin, "On the Possible Crooking of a Tensile Crack in an Anisotropic Plane," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 173-184 (2006) [Mech. Solids (Engl. Transl.)].
13.  S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body (Nauka, Moscow, 1977) [in Russian].
14.  A. N. Stroch, "Dislocations and Cracks in Anisotropic Elasticity," Phil. Mag. 3 (30), 625-646 (1958).
15.  G. N. Savin, Stress Distribution Near Holes (Naukova Dumka, Kiev, 1968) [in Russian].
16.  T. C. T. Ting, "Effects of Change of Reference Coordinates on the Stress Analyses of Anisotropic Elastic Materials," Int. J. Solids Struct., 18 (2), 139-152 (1982).
17.  Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979) [in Russian].
18.  R. V. Goldstein and E. I. Shifrin, "Integral Equations of the Problem on an Elastic Inclusion. Complete Analytical Solution of the Problem on an Elliptic Inclusion," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 50-76 (2004) [Mech. Solids (Engl. Transl.)].
Received 26 January 2007
Link to Fulltext
<< Previous article | Volume 42, Issue 3 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100