Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-4pp.583-594

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 42, Issue 4 / 2007 | Next article >>
M. A. Kulesh, V. P. Matveenko, and I. N. Shardakov, "Dispersion and polarization of surface Rayleigh waves for the Cosserat continuum," Mech. Solids. 42 (4), 583-594 (2007)
Year 2007 Volume 42 Number 4 Pages 583-594
Title Dispersion and polarization of surface Rayleigh waves for the Cosserat continuum
Author(s) M. A. Kulesh (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Korolyova 1, Perm, 614013, Russia, kma@icmm.ru)
V. P. Matveenko (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Korolyova 1, Perm, 614013, Russia, mvp@icmm.ru)
I. N. Shardakov (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Akad. Korolyova 1, Perm, 614013, Russia, shardakov@icmm.ru)
Abstract In the framework of the nonsymmetric theory of elasticity (the Cosserat contimum), we consider the problem of propagation of a surface acoustic Rayleigh wave in the half-space. The wave is represented as a wave packet of arbitrary form bounded both in the time space and the Fourier space. We assume that the material strain is described by not only the displacement vector but also an independent rotation vector. The general analytic solution of this problem is obtained in displacements. We perform comparative analysis of the obtained solution and the corresponding solution for the classical elastic medium. We introduce and analyze macroparameters characterizing the difference between the stress-strain state and the state predicted by the classical theory of elasticity: the elasticity coefficient, the wave number, and the phase and group velocities. It should be noted that these parameters can be measured experimentally.
References
1.  W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1975).
2.  V. A. Pal'mov, "Fundamental Equations of Nonsymmetric Elasticity Theory," Prikl. Mat. Mekh. 28 (3), 401-408 (1964) [J. Appl. Math. Mech. (Engl. Transl.)].
3.  A. C. Eringen, Microcontinuum Field Theories, Vol. I, Foundations and Solids (Springer, New York, 1998).
4.  N. F. Morozov, Selected Two-Dimensional Problems of Elasticity Theory (Izd-vo LGU, Leningrad, 1978) [in Russian].
5.  R. D. Gauthier and W. E. Jahsman, "A Quest for Micropolar Elastic Constants," Trans. ASME: J. Appl. Mech. 42 (2), 369-374 (1975).
6.  V. I. Erofeev, Wave Processes in Solids with Microstructure (Isz-vo MGU, Moscow, 1999) [in Russian].
7.  R. S. Lakes, "Experimental Methods for Study of Cosserat Elastic Solids and Other Generalized Continua," in Continuum Models for Materials with Micro-Structure, Ed. by H. Muhlhaus (Wiley, New York, 1995), Chap. 1, pp. 1-22.
8.  R. D. Gauthier and W. E. Jahsman, "A Quest for Micropolar Elastic Constants, Pt 2," Arch. Mech. 33 (5), 717-737 (1981).
9.  I. A. Viktorov, Acoustic Surface Waves in Solids (Nauka, Moscow, 1981) [in Russian].
10.  S. V. Biryukov, Yu. V. Gulyaev, V. V. Krylov, and V. P. Plesskii, Surface Acoustic Waves in Inhomogeneous Media (Nauka, Moscow, 1991) [in Russian].
11.  G. Adomeit, Ausbreitung elastischer Wellen und Bestimmung von Materialkonstanten im Cosserat-Kontinuum (Techn. Hochschule, Aachen, 1967) [in German].
12.  A. E. Lyalin, V. A. Pirozhkov, and R. D. Stepanov, "On Surface Wave Propagation in a Cosserat Medium," Akust. Zh. 28 (6), 838-840 (1982).
13.  P. Bhatnagar, Nonlinear Waves in One-Dimensional Dispersive Systems (Clarendon Press, Oxford, 1979; Mir, Moscow, 1983).
14.  J. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977) [in Russian].
15.  J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, Amsterdam-London, 1973).
16.  R. M. Rene, J. L. Fitter, P. M. Forsyth, et al., "Multicomponent Seismic Studies Using Complex Trace Analysis," Geophysics 51 (6), 1235-1251 (1986).
17.  Y. Nakamura, "A Method for Dynamical Characteristics Estimation of Subsurfaces Using Microtremor on the Ground Surface," Quart. Report Railway Techn. Research Inst. 30 (1), 25-33 (1989).
18.  A. L. Levshin, T. B. Yanovskaya, A. V. Lander, et al., Surface Seismic Waves in Horizontally Inhomogeneous Earth (Nauka, Moscow, 1986) [in Russian].
19.  M. Holschneider, Wavelets: An Analysis Tool (Clarendon Press, Oxford, 1995).
20.  N. M. Astaf'eva, "Wavelet Analysis: Theoretical Backgrounds and Application Examples," Usp. Fiz. Nauk 166 (11), 1145-1170 (1996).
21.  A. I. Lurie, Theory of Elasticity (Nauka, Moscow, 1970) [in Russian].
22.  G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1973).
23.  M. A. Kulesh, V. P. Matveenko, and I. N. Shardakov, "Construction of Analytic Solutions of Some Two-Dimensional Problems of the Moment Theory of Elasticity," Izv. akad. Nauk. Mekh. Tverd. Tela, No. 5, 69-82 (2002) [Mech. Solids (Engl. Transl.)].
24.  J. S. Bendat and A. G. Piersol, Random Date: Analysis and Measurement Procedures (Wiley, New York, 1971; Mir, Moscow, 1989).
25.  D. G. Ghiglia and L. A. Romero, "Robust Two-Dimensional Weighted and Unweighted Phase Unwrapping That Uses Fast Transforms and Iterative Methods," J. Opt. Soc. America A 11 (1), 107-117 (1994).
26.  M. Kulesh, M. Holschneider, M. S. Diallo, et al., "Modeling of Wave Dispersion Using Continuous Wavelet Transforms," Pure and Appl. Geophys. 162 (5), 843-855 (2005).
Received 15 September 2004
Link to Fulltext
<< Previous article | Volume 42, Issue 4 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100