Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2006-2pp.72-80

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 41, Issue 2 / 2006 | Next article >>
V. A. Postnov and G. A. Tumashik, "Stability optimization of a cantilever beam subjected to a non-conservative compressive force," Mech. Solids. 41 (2), 72-80 (2006)
Year 2006 Volume 41 Number 2 Pages 72-80
Title Stability optimization of a cantilever beam subjected to a non-conservative compressive force
Author(s) V. A. Postnov (St. Petersburg)
G. A. Tumashik (St. Petersburg)
Abstract For a cantilever beam subjected to a retarded follower force, the increase of the critical load by means of the material redistribution along the beam length is considered. The influence of the time delay parameter is studied in detail. It is shown that the optimization of a non-conservatively loaded beam can result in substantial (up to several times) increase in the critical load. For the optimized beams, only the flutter instability is observed. As the system non-conservativeness increases, the critical load multiplicity (i.e., the number of coinciding local optima) for the optimal beam also increases.
References
1.  V. V. Bolotin, Dynamic Stability of Elastic Systems [in Russian], Gostekhizdat, Moscow, 1956.
2.  V. V. Bolotin, Non-conservative Problems of the Theory of Elastic Stability [in Russian], Fizmatgiz, Moscow, 1961.
3.  Ya. G. Panovko and I. I. Gubanova, Stability and Vibrations of Elastic Systems [in Russian], Nauka, Moscow, 1987.
4.  H. Ziegler, Basic Principles of the Theory of Stability of Structures [Russian translation], Mir, Moscow, 1971.
5.  V. V. Bolotin, "Dynaimc instabilities in mechanics of structures," Applied Mechanics Review, Vol. 52, No. 1, pp. 1-9, 1999.
6.  F. N. Shklyarchuk and T. V. Grishanina, Vibrations in Non-conservative Systems [in Russian], Izd-vo MAI, Moscow, 1999.
7.  I. Elishakoff, "Elastic stability: From Euler to Koiter; there was none like Koiter," Meccanica, Vol. 35, pp. 375-380, 2000.
8.  W. T. Koiter, "Unrealistic follower forces," J. Sound and Vibration, Vol. 196, No. 4, pp. 636-638, 1996.
9.  Y. Sugiyama, M. A. Langthjem, and B.-J. Ryu, "Realistic follower forces," J. Sound and Vibration, Vol. 199, No. 4, pp. 779-782, 1999.
10.  A. Pflüger, Stabilitätsprobleme der Elastostatik, Berlin: Göttingen, 1950.
11.  V. I. Feodos'ev, Selected Problems and Questions on the Strength of Materials [in Russian], Nauka, Moscow, 1996.
12.  M. Beck, "Die Knicklast des einseutig eingespannten, tangentialen gedrückten Stabes," Zeitschrift für Angewandte Mathematik und Physik, Vol. 3, pp. 225-228, 476-477, 1952.
13.  K. S. Deineko and M. Ya. Leonov, "Dynamic method for the buckling analysis of a compressed beam," PMM [Applied Mathematics and Mechanics], Vol. 19, No. 6, pp. 738-744, 1955.
14.  G. Yu. Dzhanelidze, "On the stability of a beam under a follower force," Tr. LPI, No. 192, pp. 21-27, 1958.
15.  Z. Celep, "On the vibration and stability of Beck's column subjected to vertical and follower forces," Zeitschrift für Angewandte Mathematik und Physik, Vol. 57, pp. 555-557, 1977.
16.  Q. H. Zuo and H. L. Schreyer, "Flutter and divergence instability of nonconservative beams and plates," Intern. J. of Solids and Structures, Vol. 33, No. 9, pp. 1355-1367, 1966.
17.  K. Vepa, "Generalization of an energetic optimality condition for non-conservative systems," J. Struct. Mech., No. 2, pp. 229-257, 1973.
18.  F. Odeh, and I. Tadjbakhsh, "The shape of the strongest column with a follower load," J. Opt. Theory Appl., Vol. 15, pp. 103-118, 1975.
19.  J. L. Claudon, "Characteristic curves and optimal design of two structures subjected to circulatory loads," J. de Méchanique, Vol. 14, No. 3, pp. 531-543, 1975.
20.  M. Hanaoka and K. Washizu, "Optimal design of Beck's column," Comput. Struct., Vol. 11, pp. 473-480, 1980.
21.  W. Gutkowski, O. Mahrenholz, and M. Pyrz, "Minimum weight design of structures under nonconservative forces," in Optimization of Large Structural Systems, pp. 1087-1100, Kluwer, Dortrecht, 1993.
22.  U. T. Ringertz, "On the design of Beck's column," Struct. Optimization, No. 8, pp. 120-124, 1994.
23.  M. A. Langthjem and Y. Sugiyama, "Optimal design of cantilevered columns under the combined action of conservative and nonconservative loads," Comput. Struct., Vol. 74, pp. 385-408, 2000.
24.  I. Tadjbakhsh and J. B. Keller, "Strongest columns and isoperimetric inequalities for eigenvalues," Trans. ASME. Ser. E. J. Appl. Mech., Vol. 29, No. 1, pp. 159-164, 1962.
25.  V. A. Postnov and G. A. Tumashik, "Optimization of a cantilever prismatic beam with respect to the critical flutter load," Probl. Prochnosti i Plastichnosti [in Russian], NNGU, Nizhnii Novgorod, No. 63, pp. 104-111, 2001.
Received 07 October 2005
<< Previous article | Volume 41, Issue 2 / 2006 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100