Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-6pp.13-29

Archive of Issues

Total articles in the database: 12895
In Russian (Изв. РАН. МТТ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 40, Issue 6 / 2005 | Next article >>
I. A. Solomeshch and M. A. Solomeshch, "Elastoplastic equations with exact consistency of strains for the elastic strain frame and the velocities of points," Mech. Solids. 40 (6), 13-29 (2005)
Year 2005 Volume 40 Number 6 Pages 13-29
Title Elastoplastic equations with exact consistency of strains for the elastic strain frame and the velocities of points
Author(s) I. A. Solomeshch (Israel)
M. A. Solomeshch (Israel)
Abstract We obtain an exact strain consistency equation for full, elastic, and plastic strain characteristics that have a clear physical meaning and are naturally related to stresses. The dynamic equations are represented in a form that does not use the objective stress rate. This obviates a number of essential difficulties in the theory of finite elastoplastic strains.
References
1.  I. A. Solomeshch and M. A. Solomeshch, "The elastoplasticity equations for the elastic strain frame and the velocities of points," Doklady RAN, Vol. 354, No. 6, pp. 759-761, 1997.
2.  P. M. Naghdi, "A Critical review of the state of finite plasticity," ZAMP, Vol. 41, No. 3, pp. 315-394, 1990.
3.  A. S. Khan and S. Huang, Continuum Theory of Plastisity, Wiley, New York, 1995.
4.  A. Reuss, "Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie," ZAMM, Vol. 10, No. 3, pp. 266-274, 1930.
5.  A. E. Green and P. M. Naghdi, "A general theory of an elastic-plastic continuum," Arch. Ration. Mech. Anal., Vol. 18, No. 4, pp. 251-281, 1965.
6.  M. B. Rubin, "Plasticity theory formulated in terms of physically based microstructural variables," Intern. J. Solids Structures. 1994. V. 31.19. P. 2615-2634.
7.  J. F. Besseling and E. van der Giessen, Mathematical Modelling of Inelastic Deformation, Chapman and Hall, London, 1994.
8.  C. Eckart, "The thermodynamics of irreversible processes. IV. The theory of elasticity and plasticity," Phys. Rev., Vol. 73, No. 4, pp. 373-382, 1948.
9.  P. M. Naghdi and A. R. Srinivasa, "A dynamical theory of structured solids. I. Basic developments," Phil. Trans. Roy. Soc. London. Ser. A, Vol. 345, No. 1677, pp. 425-458, 1993.
10.  E. H. Lee and D. T. Liu, "Finite-strain elastic-plastic theory with application to plane-wave analysis," J. Appl. Phys., Vol. 38, No. 1, pp. 19-27, 1967.
11.  A. V. Shitikov, "On a variational principle for the construction of the elastoplasticity equations at finite strains," PMM [Applied Mathematics and Mechanics], Vol. 59, No. 1, pp. 158-161, 1995.
12.  P. Ciarlet, Mathematical Elasticity [Russian translation], Mir, Moscow, 1992.
13.  A. A. Il'yushin, Continuum Mechanics, Izd-vo MGU, Moscow, 1990.
14.  R. Hill, The Mathematical Theory of Plasticity [Russian translation], Gostekhizdat, Moscow, 1956.
Received 26 June 2002
<< Previous article | Volume 40, Issue 6 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100