Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 40, Issue 6 / 2005 | Next article >>
D. A. Georgievskaya and D. V. Georgievskii, "Saint-Venant plastic flows with weakly inhomogeneous yield strength," Mech. Solids. 40 (6), 1-12 (2005)
Year 2005 Volume 40 Number 6 Pages 1-12
Title Saint-Venant plastic flows with weakly inhomogeneous yield strength
Author(s) D. A. Georgievskaya (Moscow)
D. V. Georgievskii (Moscow)
Abstract Among other things, the statement of the problem for an inhomogeneous perfectly plastic medium under the Eulerian description of motion includes finding the law of motion of Lagrangian particles along the trajectories and the inversion of this law. If the value of a single material function, the yield strength, in the inhomogeneous material at the initial time slightly differs from a known (say, constant) distribution, the asymptotic method is applied. The notions of weak inhomogeneity in the narrow and broad sense are introduced.

The suggested method is tested for the solution of the problem on the dilation-contraction of a weakly inhomogeneous thick-walled perfectly plastic tube. For the main process we take the quasi-static deformation of a tube inhomogeneous along the radius, where the inhomogeneity can be "strong" and "discontinuous" (i.e., the solid can be a composite). For the perturbations, we state a linearized initial-boundary value problem, which can be solved analytically in the first approximation. The solution reveals a relationship between the character of the given inhomogeneity and the singularities of the solution in the first approximation with respect to the small parameter.
References
1.  A. A. Il'yushin, Plasticity [in Russian], Gostekhizdat, Leningrad, 1948.
2.  V. V. Sokolovskii, Theory of Plasticity [in Russian], Vysshaya Shkola, Moscow, 1969.
3.  M. I. Erkhov, Theory of Perfectly Plastic Solids and Structures [in Russian], Nauka, Moscow, 1978.
4.  I. A. Kiiko, Theory of Plastic Flow [in Russian], Izd-vo MGU, Moscow, 1978.
5.  M. A. Zadoyan, 3D Plasticity Problems [in Russian], Nauka, Moscow, 1992.
6.  A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity [in Russian], Fizmatlit, Moscow, 2001.
7.  V. G. Zubchaninov, Mathematical Theory of Plasticity [in Russian], Izd-vo Tversk. Un-ta, Tver, 2002.
8.  B. E. Pobedrya, Mechanics of Composites [in Russian], Izd-vo MGU, Moscow, 1984.
9.  D. V. Georgievskii, D. M. Klimov, and A. G. Petrov, "On inertia-free deformation of a weakly inhomogeneous viscous medium," Vestnik MGU, Ser. 1, Mat. Mekh., No. 2, pp. 37-41, 2002.
10.  D. V. Georgievskii, D. M. Klimov, and A. G. Petrov, "Problems on inertia-free flow of a weakly inhomogeneous viscous medium," Izv. RAN. MZhG [Fluids Dynamics], No. 3, pp. 17-25, 2003.
11.  A. G. Petrov, "An asymptotic method for constructing the Poincaré map when describing transition to dynamic chaos in Hamiltonian systems," Doklady RAN, Vol. 382, No. 1, pp. 15-19, 2002.
12.  D. V. Georgievskii and D. M. Klimov, "Energy analysis of the evolution of kinematic perturbations in weakly inhomogeneous viscous fluids," Izv. RAN. MZhG [Fluids Dynamics], No. 2, pp. 56-67, 2000.
13.  D. V. Georgievskii, "Dynamic perturbations of the undeformed state in perfectly plastic flows," Vestnik MGU, Ser. 1, Mat. Mekh., No. 4, pp. 45-50, 2004.
14.  A. A. Il'yushin, "Deformation of a viscoplastic solid," Uchen. Zap. MGU, Mekh., No. 39, pp. 3-81, 1940.
Received 30 June 2005
<< Previous article | Volume 40, Issue 6 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100