Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-5pp.34-47

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 40, Issue 5 / 2005 | Next article >>
R. V. Goldstein and E. I. Shifrin, "Stress state in an elastic space due to phase transformations in an inclusion," Mech. Solids. 40 (5), 34-47 (2005)
Year 2005 Volume 40 Number 5 Pages 34-47
Title Stress state in an elastic space due to phase transformations in an inclusion
Author(s) R. V. Goldstein (Moscow)
E. I. Shifrin (Moscow)
Abstract We consider the problem on phase transformations in a domain in an elastic space manifesting themselves as changes in the shape, size, and elastic properties of the domain. Using an earlier-developed generalization of the Eshelby method, we construct integral equations for the stress tensor components in the inclusion where the phase transformations have occurred. If the inclusion shape is that of an elliptic cylinder, we obtain closed-form analytical expressions for the stress tensor components inside and outside the inclusion.
References
1.  N. S. Ling and W. S. Owen, "A model of the thermoelastic growth of martensite," Acta Metallurg., Vol. 29, No. 10, pp. 1721-1736, 1981.
2.  G. Rauchs, T. Fett, and D. Munz, "Calculation of authocatalytic phase transformation zones in cracked and uncracked zirconia ceramics," Intern. J. Fract., Vol. 116, No. 2, pp. 121-140, 2002.
3.  J. Eshelby, "Determination of the elastic stress field generated by and ellipsoidal inclusion and related problems," in J. Eshelby, Continuous Dislocation Theory [Russian translation], pp. 103-139, Izd-vo Inostr. Lit-ry, Moscow, 1963.
4.  R. J. Asaro, "Somigliana dislocations and internal stresses; with application to second phase hardening," Intern. J. of Engng. Sci., Vol. 13, No. 3, pp. 271-286, 1975.
5.  T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff Publ., Dordrecht, 1987.
6.  J. Eshelby, "Elastic field outside an ellipsoidal inclusion," in J. Eshelby, Continuous Dislocation Theory [Russian translation], pp. 140-153, Izd-vo Inostr. Lit-ry, Moscow, 1963.
7.  R. V. Goldstein and E. I. Shifrin, A Plane Problem on the Stress State Determined by Phase Transformations in an Elliptic Domain. Preprint No. 714 [in Russian], In-t Problem Mekhaniki RAN, Moscow, 2003.
8.  R. V. Goldstein and E. I. Shifrin, "Integral equations of the problem on an elastic inclusion. The complete analytical solution of the problem on an elliptic inclusion," Izv. AN. MTT [Mechanics of Solids], No. 1, pp. 50-76, 2004.
9.  D. C. Lagoudas, Z. Bo, and M. A. Qidwai, "A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites," Mech. Compos. Mater. Struct., Vol. 3, pp. 153-179, 1996.
10.  M. A. Qidwai, P. T. Entchev, D. C. Lagoudas, and V. G. DeGiorgi, "Modeling of the thermomechanical behavior of porous shape memory alloys," Intern. J. of Solids and Structures, Vol. 38, pp. 8653-8671, 2001.
Received 08 June 2004
<< Previous article | Volume 40, Issue 5 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100