Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-5pp.27-33

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 40, Issue 5 / 2005 | Next article >>
I. I. Argatov, "Approximate solution of the axisymmetric hertz problem allowing for tangential displacements on the contact surface," Mech. Solids. 40 (5), 27-33 (2005)
Year 2005 Volume 40 Number 5 Pages 27-33
Title Approximate solution of the axisymmetric hertz problem allowing for tangential displacements on the contact surface
Author(s) I. I. Argatov (St. Petersburg)
Abstract We consider a one-sided contact problem for two elastic bodies bounded by paraboloids of revolution. Under simplifying assumptions, this problem is reduced to a system of two integral equations with nonsymmetric kernels. An approximate solution of the contact problem allowing for tangential displacements on the contact surface is obtained in closed form.
References
1.  H. Hertz, "Über die Berührung fester elastischer Körper," J. für die reine und angew. Math., Vol. 92, pp. 156-171, 1882.
2.  A. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge, 1892-93.
3.  W. Nowacki, Elasticity Theory, PWN, Warsaw, 1970.
4.  B. A. Galanov, "Statement and solution of some refined problems of elastic contact of two bodies," Izv. AN SSSR. MTT [Mechanics of Solids], No. 6, pp. 56-63, 1983.
5.  B. A. Galanov, "On the approximate solution of some problems of elastic contact of two bodies," Izv. AN SSSR. MTT [Mechanics of Solids], No. 5, pp. 61-67, 1981.
6.  B. A. Galanov and Yu. M. Krivonos, "Taking into account tangential displacements on the contact surface in the Hertz problem," in Numerical and Applied Mathematics [in Russian], No. 53, pp. 87-94, Vishcha Shkola, Kiev, 1984.
7.  I. A. Soldatenkov, The Contact Problem for a Half-Plane in the Refined Statement (Allowing for Tangential Contact Displacements). Preprint No. 501 [in Russian], In-t Problem Mekhaniki AN SSSR, Moscow, 1991.
8.  I. A. Soldatenkov, "The contact problem for a half-plane with the tangential contact displacement taken into account," Izv. AN. MTT [Mechanics of Solids], No. 4, pp. 51-61, 1994.
9.  A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Boston, 1999.
10.  I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow, 1963.
11.  M. Ya. Leonov, "To the theory of analysis of elastic bases," PMM [Applied Mathematics and Mechanics], Vol. 3, No. 2, pp. 53-78, 1939.
12.  G. Schubert, "Zur Frage der Druckverteilung unter elastisch gelagerten Tragwerken," Ing.-Archiv, Vol. 13, No. 3, pp. 132-147, 1942.
13.  I. Ya. Shtaerman, The Contact Problem of Elasticity [in Russian], Gostekhizdat, Moscow, Leningrad, 1949.
14.  V. I. Mossakovskii, "Application of the reciprocity theorem to the determination of net forces and moments in 3D contact problems," PMM [Applied Mathematics and Mechanics], Vol. 17, No. 4, pp. 477-482, 1953.
Received 29 May 2003
<< Previous article | Volume 40, Issue 5 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100