Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2005-1pp.14-25

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 40, Issue 1 / 2005 | Next article >>
A. P. Markeev, "Motion of a rigid body with a single fixed point in the Steklov case," Mech. Solids. 40 (1), 14-25 (2005)
Year 2005 Volume 40 Number 1 Pages 14-25
Title Motion of a rigid body with a single fixed point in the Steklov case
Author(s) A. P. Markeev (Moscow)
Abstract A motion of a heavy rigid body with a single fixed point is analyzed. The center of gravity of the body is located on the medium or the smallest axis of the ellipsoid of inertia. In addition to the "triangle" inequalities usual for a rigid body, the moments of inertia satisfy the conditions B>A>2C or 2B>A>B>C and A>2C. Under these conditions, the Euler-Poisson equations may have particular periodic solutions indicated by V. A. Steklov. In this paper, we study the problem of orbital stability of periodic motions of a rigid body which correspond to the Steklov solutions.
References
1.  V. A. Steklov,"A new particular solution of differential equations of motion of a heavy rigid body with a fixed point," Trudy Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., Vol. 10, No. 1, pp. 1-3, 1899.
2.  G. V. Gorr and L. V. Kudryashova, Classical Problems of Dynamics of a Rigid Body: Development and State of the Art [in Russian], Naukova Dumka, Kiev, 1978.
3.  A. I. Dokshevich, Closed-form Solutions of Euler-Poisson Equations [in Russian], Naukova Dumka, Kiev, 1992.
4.  P. A. Kuz'min, "An addition to the V. A. Steklov case of motion of a rigid body about a fixed point," PMM [Applied Mathematics and Mechanics], Vol. 16, No. 2, pp. 243-245, 1952.
5.  P. A. Kuz'min, "Particular kinds of motion of a heavy rigid body about a fixed point (in works by Russian scientists)," Trudy Kazan. Aviats. In-ta, Vol. 27, pp. 91-121, 1953.
6.  A. M. Zhuravskii, A Handbook on Elliptic Functions [in Russian], Izd-vo AN SSSR, Moscow, Leningrad, 1941.
7.  E. I. Kharlamova and G. V. Mozalevskaya, "Investigation of the V. A. Steklov solution of the equations of motion of a body with a fixed point," in Matematicheskaya Fizika [in Russian], No. 5, pp. 194-202, Nauk. Dumka, Kiev, 1968.
8.  A. A. Bogoyavlenskii, "On some particular cases of the motion of a heavy rigid body with a fixed point," PMM [Applied Mathematics and Mechanics], Vol. 22, No. 5, pp. 622-645, 1958.
9.  A. A. Bogoyavlenskii, "On some particular solutions of the problem of motion of a heavy rigid body with a fixed point," PMM [Applied Mathematics and Mechanics], Vol. 22, No. 6, pp. 738-749, 1958.
10.  D. N. Goryachev, "A new particular solution of the problem of motion of a heavy rigid body with a fixed point," Trudy Otdel. Fiz. Nauk Obsch. Lyubit. Estestovzn., Vol. 10, No. 1, pp. 23-24, 1899.
11.  S. A. Chaplygin, "A new particular solution of the problem of rotation of a heavy rigid body about a fixed point," Trudy Otdel. Fiz. Nauk Obsch. Lyubit. Estestovzn., Vol. 12, No. 1, pp. 1-4, 1904.
12.  N. Kowalewski, "Eine neue particuläre Lösung der Differentialgleichungen der Bewegung eines schweren starren Körpers um einen festen Punkt," Math. Annalen., Bd. 65, S. 528-537, 1908.
13.  P. V. Kharlamov, "Polynomial solutions of the equations of motion of a body with a fixed point," PMM [Applied Mathematics and Mechanics], Vol. 29, No. 1, pp. 26-34, 1965.
14.  L. V. Kudryashova and G. V. Mozalevskaya, "On a class of solutions of the problem of motion of a body with a fixed point," in Matematicheskaya Fizika [in Russian], No. 5, pp. 139-150, Naukova Dumka, Kiev, 1968.
15.  A. P. Markeev, "Algorithm of normalization of the Hamiltonian system for the problem of the orbital stability of periodic motions," PMM [Applied Mathematics and Mechanics], Vol. 66, No. 6, pp. 929-9938, 2002.
16.  V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics [in Russian], Editorial URSS, Moscow, 2002.
17.  A. P. Markeev, Libration Points in Celestial Mechanics and Cosmodynamics [in Russian], Nauka, Moscow, 1978.
18.  A. P. Markeev, Theoretical Mechanics [in Russian], NITs "Regul. Khaot. Din.," Izhevsk, 2001.
19.  I. G. Malkin, Theory of Stability of Motion [in Russian], Nauka, Moscow, 1966.
20.  E. Yu. Kucher, "Characteristic parameters of Steklov and Chaplygin periodic solutions," in Mekhanika Tverdogo Tela [in Russian], No. 33, pp. 33-39, In-t Prikl. Metematiki i Mekhaniki NAN Ukrainy, Donetsk, 2003.
21.  A. P. Markeev, "One approach to the stability abalysis of equilibrium states of Hamiltonian systems," Izv. AN. MTT [Mechanics of Solids], No. 6, pp. 3-12, 2004.
22.  A. P. Markeev, "On area preserving mappings and their applications to the dynamics of systems with collisions," Izv. AN. MTT [Mechanics of Solids], No. 2, pp. 37-54, 1996.
Received 26 April 2004
<< Previous article | Volume 40, Issue 1 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100